A condition for weak disorder for directed polymers in random environment.
We study a random walk pinning model, where conditioned on a simple random walk on ℤ acting as a random medium, the path measure of a second independent simple random walk up to time is Gibbs transformed with hamiltonian − (, ), where (, ) is the collision local time between and up to time . This model arises naturally in various contexts, including the study of the parabolic Anderson model with moving catalysts, the parabolic Anderson model with brownian noise,...
We study the continuous time version of the , where conditioned on a continuous time random walk ( )≥0 on ℤ with jump rate > 0, which plays the role of disorder, the law up to time of a second independent random walk ( )0≤≤ with jump rate 1 is Gibbs transformed with weight e (,), where (, ) is the collision local time between and up to time . As the inverse temperature varies, the model undergoes a localization–delocalization...
Page 1