Comparison results and steady states for the Fujita equation with fractional laplacian
Matthias Birkner; José Alfredo López-Mimbela; Anton Wakolbinger
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 1, page 83-97
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBirkner, Matthias, López-Mimbela, José Alfredo, and Wakolbinger, Anton. "Comparison results and steady states for the Fujita equation with fractional laplacian." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 83-97. <http://eudml.org/doc/78648>.
@article{Birkner2005,
author = {Birkner, Matthias, López-Mimbela, José Alfredo, Wakolbinger, Anton},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up and extinction of solutions of semilinear partial differential equations; comparison; Feynman-Kac representation; symmetry of solutions; symmetric stable processes; method of moving planes},
language = {eng},
number = {1},
pages = {83-97},
publisher = {Elsevier},
title = {Comparison results and steady states for the Fujita equation with fractional laplacian},
url = {http://eudml.org/doc/78648},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Birkner, Matthias
AU - López-Mimbela, José Alfredo
AU - Wakolbinger, Anton
TI - Comparison results and steady states for the Fujita equation with fractional laplacian
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 83
EP - 97
LA - eng
KW - blow-up and extinction of solutions of semilinear partial differential equations; comparison; Feynman-Kac representation; symmetry of solutions; symmetric stable processes; method of moving planes
UR - http://eudml.org/doc/78648
ER -
References
top- [1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, Dover, New York, 1972. Zbl0543.33001
- [2] Alexandrov A.D., Uniqueness theorems for surfaces in the large I–V, Vestnik Leningrad Univ.11 (19) (1956) 5-17, 12 (7) (1957) 15–44; 13 (7) (1958) 14–26; 13 (13) (1958) 27–34; 13 (19) (1958) 5–8, English transl. in, Am. Math. Soc. Transl.21 (1962) 341-354, 354–388, 389–403, 403–411, 412–416. MR102111
- [3] Bianchi G., Non-existence of positive solutions to semilinear elliptic equations on or through the method of moving planes, Comm. Partial Differential Equations22 (9–10) (1997) 1671-1690. Zbl0910.35048MR1469586
- [4] Birkner M., López-Mimbela J.A., Wakolbinger A., Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach, Proc. Amer. Math. Soc.130 (8) (2002) 2431-2442. Zbl0993.60068MR1897470
- [5] Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
- [6] Blumenthal R.M., Getoor R.K., Ray D.B., On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc.99 (1961) 540-554. Zbl0118.13005MR126885
- [7] Bogdan K., Byczkowski T., Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist.20 (2) (2000) 293-335. Zbl0996.31003MR1825645
- [8] Chen W.X., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (3) (1991) 615-622. Zbl0768.35025MR1121147
- [9] Feireisl E., Petzeltová H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations10 (1) (1997) 181-196. Zbl0879.35023MR1424805
- [10] Folland G.B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1995. Zbl0841.35001MR1357411
- [11] Fujita H., On the blowing up of solutions of the Cauchy problem for , J. Fac. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002MR214914
- [12] Getoor R.K., Markov operators and their associated semigroups, Pacific J. Math.9 (1959) 449-472. Zbl0086.33804MR107297
- [13] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in , Math. Anal. Appl. Part A, Adv. Math. Suppl. Stud.7 (1981) 369-402. Zbl0469.35052MR634248
- [14] Gui Ch., Ni W.-M., Wang W., On the stability and instability of positive steady states of a semilinear heat equations in , Comm. Pure Appl. Math.XLV (1992) 1153-1181. Zbl0811.35048MR1177480
- [15] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (4) (1981) 525-598. Zbl0465.35003MR615628
- [16] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1998. Zbl0361.35003
- [17] Kobayashi K., Sirao T., Tanaka H., On the growing up problem for semilinear heat equations, J. Math. Soc. Japan29 (1977) 407-424. Zbl0353.35057MR450783
- [18] López-Mimbela J.A., Wakolbinger A., A probabilistic proof of non-explosion of a non-linear PDE system, J. Appl. Probab.37 (3) (2000) 635-641. Zbl0986.60081MR1782441
- [19] Nagasawa M., Sirao T., Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc.139 (1969) 301-310. Zbl0175.40702MR239379
- [20] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
- [21] Pohožaev S.I., Eigenfunctions of the equation , Soviet Math. Dokl.165 (1) (1965) 1408-1411. Zbl0141.30202MR192184
- [22] Serrin J., A symmetry problem in potential theory, Arch. Rat. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
- [23] Sugitani S., On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math.12 (1975) 45-51. Zbl0303.45010MR470493
- [24] Wang X., On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc.337 (1993) 549-590. Zbl0815.35048MR1153016
- [25] Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944. Zbl0063.08184MR10746JFM50.0264.01
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.