Comparison results and steady states for the Fujita equation with fractional laplacian

Matthias Birkner; José Alfredo López-Mimbela; Anton Wakolbinger

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 83-97
  • ISSN: 0294-1449

How to cite

top

Birkner, Matthias, López-Mimbela, José Alfredo, and Wakolbinger, Anton. "Comparison results and steady states for the Fujita equation with fractional laplacian." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 83-97. <http://eudml.org/doc/78648>.

@article{Birkner2005,
author = {Birkner, Matthias, López-Mimbela, José Alfredo, Wakolbinger, Anton},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up and extinction of solutions of semilinear partial differential equations; comparison; Feynman-Kac representation; symmetry of solutions; symmetric stable processes; method of moving planes},
language = {eng},
number = {1},
pages = {83-97},
publisher = {Elsevier},
title = {Comparison results and steady states for the Fujita equation with fractional laplacian},
url = {http://eudml.org/doc/78648},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Birkner, Matthias
AU - López-Mimbela, José Alfredo
AU - Wakolbinger, Anton
TI - Comparison results and steady states for the Fujita equation with fractional laplacian
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 83
EP - 97
LA - eng
KW - blow-up and extinction of solutions of semilinear partial differential equations; comparison; Feynman-Kac representation; symmetry of solutions; symmetric stable processes; method of moving planes
UR - http://eudml.org/doc/78648
ER -

References

top
  1. [1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, Dover, New York, 1972. Zbl0543.33001
  2. [2] Alexandrov A.D., Uniqueness theorems for surfaces in the large I–V, Vestnik Leningrad Univ.11 (19) (1956) 5-17, 12 (7) (1957) 15–44; 13 (7) (1958) 14–26; 13 (13) (1958) 27–34; 13 (19) (1958) 5–8, English transl. in, Am. Math. Soc. Transl.21 (1962) 341-354, 354–388, 389–403, 403–411, 412–416. MR102111
  3. [3] Bianchi G., Non-existence of positive solutions to semilinear elliptic equations on R n or R + n through the method of moving planes, Comm. Partial Differential Equations22 (9–10) (1997) 1671-1690. Zbl0910.35048MR1469586
  4. [4] Birkner M., López-Mimbela J.A., Wakolbinger A., Blow-up of semilinear PDE's at the critical dimension. A probabilistic approach, Proc. Amer. Math. Soc.130 (8) (2002) 2431-2442. Zbl0993.60068MR1897470
  5. [5] Blumenthal R.M., Getoor R.K., Markov Processes and Potential Theory, Academic Press, New York, 1968. Zbl0169.49204MR264757
  6. [6] Blumenthal R.M., Getoor R.K., Ray D.B., On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc.99 (1961) 540-554. Zbl0118.13005MR126885
  7. [7] Bogdan K., Byczkowski T., Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist.20 (2) (2000) 293-335. Zbl0996.31003MR1825645
  8. [8] Chen W.X., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (3) (1991) 615-622. Zbl0768.35025MR1121147
  9. [9] Feireisl E., Petzeltová H., Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations10 (1) (1997) 181-196. Zbl0879.35023MR1424805
  10. [10] Folland G.B., Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ, 1995. Zbl0841.35001MR1357411
  11. [11] Fujita H., On the blowing up of solutions of the Cauchy problem for u t = Δ u + u 1 + α , J. Fac. Univ. Tokyo Sect. I13 (1966) 109-124. Zbl0163.34002MR214914
  12. [12] Getoor R.K., Markov operators and their associated semigroups, Pacific J. Math.9 (1959) 449-472. Zbl0086.33804MR107297
  13. [13] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in R n , Math. Anal. Appl. Part A, Adv. Math. Suppl. Stud.7 (1981) 369-402. Zbl0469.35052MR634248
  14. [14] Gui Ch., Ni W.-M., Wang W., On the stability and instability of positive steady states of a semilinear heat equations in R n , Comm. Pure Appl. Math.XLV (1992) 1153-1181. Zbl0811.35048MR1177480
  15. [15] Gidas B., Spruck J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (4) (1981) 525-598. Zbl0465.35003MR615628
  16. [16] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1998. Zbl0361.35003
  17. [17] Kobayashi K., Sirao T., Tanaka H., On the growing up problem for semilinear heat equations, J. Math. Soc. Japan29 (1977) 407-424. Zbl0353.35057MR450783
  18. [18] López-Mimbela J.A., Wakolbinger A., A probabilistic proof of non-explosion of a non-linear PDE system, J. Appl. Probab.37 (3) (2000) 635-641. Zbl0986.60081MR1782441
  19. [19] Nagasawa M., Sirao T., Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc.139 (1969) 301-310. Zbl0175.40702MR239379
  20. [20] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. Zbl0516.47023MR710486
  21. [21] Pohožaev S.I., Eigenfunctions of the equation Δ u + λ f u = 0 , Soviet Math. Dokl.165 (1) (1965) 1408-1411. Zbl0141.30202MR192184
  22. [22] Serrin J., A symmetry problem in potential theory, Arch. Rat. Mech. Anal.43 (1971) 304-318. Zbl0222.31007MR333220
  23. [23] Sugitani S., On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math.12 (1975) 45-51. Zbl0303.45010MR470493
  24. [24] Wang X., On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc.337 (1993) 549-590. Zbl0815.35048MR1153016
  25. [25] Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1944. Zbl0063.08184MR10746JFM50.0264.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.