The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
A set A of natural numbers is finitely embeddable in another such set B if every finite subset of A has a rightward translate that is a subset of B. This notion of finite embeddability arose in combinatorial number theory, but in this paper we study it in its own right. We also study a related notion of finite embeddability of ultrafilters on the natural numbers. Among other results, we obtain connections between finite embeddability and the algebraic and topological structure of the Stone-Čech...
We consider four notions of strong inaccessibility that are equivalent in ZFC and show that they are not equivalent in ZF.
Download Results (CSV)