The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Univoque sets for real numbers

Fan LüBo TanJun Wu — 2014

Fundamenta Mathematicae

For x ∈ (0,1), the univoque set for x, denoted (x), is defined to be the set of β ∈ (1,2) such that x has only one representation of the form x = x₁/β + x₂/β² + ⋯ with x i 0 , 1 . We prove that for any x ∈ (0,1), (x) contains a sequence β k k 1 increasing to 2. Moreover, (x) is a Lebesgue null set of Hausdorff dimension 1; both (x) and its closure ( x ) ¯ are nowhere dense.

Substitutions with Cofinal Fixed Points

Bo TANZhi-Xiong WENJun WUZhi-Ying WEN — 2006

Annales de l’institut Fourier

Let ϕ be a substitution over a 2-letter alphabet, say { a , b } . If ϕ ( a ) and ϕ ( b ) begin with a and b respectively, ϕ has two fixed points beginning with a and b respectively. We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.

Page 1

Download Results (CSV)