Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Libera and Hilbert matrix operator on logarithmically weighted Bergman, Bloch and Hardy-Bloch spaces

Boban Karapetrović — 2018

Czechoslovak Mathematical Journal

We show that if α > 1 , then the logarithmically weighted Bergman space A log α 2 is mapped by the Libera operator into the space A log α - 1 2 , while if α > 2 and 0 < ε α - 2 , then the Hilbert matrix operator H maps A log α 2 into A log α - 2 - ε 2 .We show that the Libera operator maps the logarithmically weighted Bloch space log α , α , into itself, while H maps log α into log α + 1 .In Pavlović’s paper (2016) it is shown that maps the logarithmically weighted Hardy-Bloch space log α 1 , α > 0 , into log α - 1 1 . We show that this result is sharp. We also show that H maps log α 1 , α 0 , into log α - 1 1 and...

Page 1

Download Results (CSV)