The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The equation - Δ 𝑢 - λ 𝑢 | 𝑥 | 2 = | 𝑢 | 𝑝 + 𝑐 𝑓 ( 𝑥 ) : The optimal power

Boumediene AbdellaouiIreneo Peral — 2007

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We will consider the following problem - Δ u - λ u | x | 2 = | u | p + c f , u > 0 in Ω , where Ω N is a domain such that 0 Ω , N 3 , c > 0 and λ > 0 . The main objective of this note is to study the precise threshold p + = p + ( λ ) for which there is novery weak supersolutionif p p + ( λ ) . The optimality of p + ( λ ) is also proved by showing the solvability of the Dirichlet problem when 1 p < p + ( λ ) , for c > 0 small enough and f 0 under some hypotheses that we will prescribe.

A note on a critical problem with natural growth in the gradient

Boumediene AbdellaouiIreneo Peral — 2006

Journal of the European Mathematical Society

The paper analyzes the influence on the meaning of natural growth in the gradient of a perturbation by a Hardy potential in some elliptic equations. Indeed, in the case of the Laplacian the natural problem becomes Δ u Λ N u | x | 2 = u + N 2 2 u | x | 2 x 2 | x | ( N 2 ) / 2 + λ f ( x ) in Ω , u = 0 on Ω , Λ N = ( ( N 2 ) / 2 ) 2 . This problem is a particular case of problem (2). Notice that ( N 2 ) / 2 is optimal as coefficient and exponent on the right hand side.

Existence and nonexistence results for quasilinear elliptic equations involving the p -Laplacian

Boumediene AbdellaouiVeronica FelliIreneo Peral — 2006

Bollettino dell'Unione Matematica Italiana

The paper deals with the study of a quasilinear elliptic equation involving the p-laplacian with a Hardy-type singular potential and a critical nonlinearity. Existence and nonexistence results are first proved for the equation with a concave singular term. Then we study the critical case related to Hardy inequality, providing a description of the behavior of radial solutions of the limiting problem and obtaining existence and multiplicity results for perturbed problems through variational and topological...

Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities

Boumediene AbdellaouiEduardo ColoradoIreneo Peral — 2004

Journal of the European Mathematical Society

In this work we study the problem u t div ( | x | 2 γ u ) = λ u α | x | 2 ( γ + 1 ) + f in Ω × ( 0 , T ) , u 0 in Ω × ( 0 , T ) , u = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , Ω N ( N 2 ) is a bounded regular domain such that 0 Ω , λ > 0 , α > 0 , - < γ < ( N 2 ) / 2 , f and u 0 are positive functions such that f L 1 ( Ω × ( 0 , T ) ) and u 0 L 1 ( Ω ) . The main points under analysis are: (i) spectral instantaneous and complete blow-up related to the Harnack inequality in the case α = 1 , 1 + γ > 0 ; (ii) the nonexistence of solutions if α > 1 , 1 + γ > 0 ; (iii) a uniqueness result for weak solutions (in the distribution sense); (iv) further results on existence of weak solutions in the case...

Page 1

Download Results (CSV)