The equation - Δ 𝑢 - λ 𝑢 | 𝑥 | 2 = | 𝑢 | 𝑝 + 𝑐 𝑓 ( 𝑥 ) : The optimal power

Boumediene Abdellaoui; Ireneo Peral

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2007)

  • Volume: 6, Issue: 1, page 159-183
  • ISSN: 0391-173X

Abstract

top
We will consider the following problem - Δ u - λ u | x | 2 = | u | p + c f , u > 0 in Ω , where Ω N is a domain such that 0 Ω , N 3 , c > 0 and λ > 0 . The main objective of this note is to study the precise threshold p + = p + ( λ ) for which there is novery weak supersolutionif p p + ( λ ) . The optimality of p + ( λ ) is also proved by showing the solvability of the Dirichlet problem when 1 p < p + ( λ ) , for c > 0 small enough and f 0 under some hypotheses that we will prescribe.

How to cite

top

Abdellaoui, Boumediene, and Peral, Ireneo. "The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.1 (2007): 159-183. <http://eudml.org/doc/272289>.

@article{Abdellaoui2007,
abstract = {We will consider the following problem\[-\Delta u-\lambda \frac\{u\}\{|x|^2\}=|\nabla u|^p+c\,f,\quad u&gt;0 \hbox\{ in \} \Omega ,\quad \]where $ \Omega \subset \mathbb \{R\}^N$ is a domain such that $0\in \Omega $, $N\ge 3$, $c&gt;0$ and $\lambda &gt;0$. The main objective of this note is to study the precise threshold $p_+=p_+(\lambda )$ for which there is novery weak supersolutionif $ p\ge p_+(\lambda )$. The optimality of $p_+(\lambda )$ is also proved by showing the solvability of the Dirichlet problem when $1\le p&lt;p_+(\lambda )$, for $c&gt;0$ small enough and $f\ge 0$ under some hypotheses that we will prescribe.},
author = {Abdellaoui, Boumediene, Peral, Ireneo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {optimal power; supersolution; solvability; Dirichlet problem},
language = {eng},
number = {1},
pages = {159-183},
publisher = {Scuola Normale Superiore, Pisa},
title = {The equation $-\Delta \textit \{u\}-\lambda \dfrac\{\textit \{u\}\}\{|\textit \{x\}|^\{\bf 2\}\}=|\nabla \textit \{u\}|^\{\textit \{p\}\}+ \textit \{c\} \textit \{f\}(\textit \{x\})$: The optimal power},
url = {http://eudml.org/doc/272289},
volume = {6},
year = {2007},
}

TY - JOUR
AU - Abdellaoui, Boumediene
AU - Peral, Ireneo
TI - The equation $-\Delta \textit {u}-\lambda \dfrac{\textit {u}}{|\textit {x}|^{\bf 2}}=|\nabla \textit {u}|^{\textit {p}}+ \textit {c} \textit {f}(\textit {x})$: The optimal power
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2007
PB - Scuola Normale Superiore, Pisa
VL - 6
IS - 1
SP - 159
EP - 183
AB - We will consider the following problem\[-\Delta u-\lambda \frac{u}{|x|^2}=|\nabla u|^p+c\,f,\quad u&gt;0 \hbox{ in } \Omega ,\quad \]where $ \Omega \subset \mathbb {R}^N$ is a domain such that $0\in \Omega $, $N\ge 3$, $c&gt;0$ and $\lambda &gt;0$. The main objective of this note is to study the precise threshold $p_+=p_+(\lambda )$ for which there is novery weak supersolutionif $ p\ge p_+(\lambda )$. The optimality of $p_+(\lambda )$ is also proved by showing the solvability of the Dirichlet problem when $1\le p&lt;p_+(\lambda )$, for $c&gt;0$ small enough and $f\ge 0$ under some hypotheses that we will prescribe.
LA - eng
KW - optimal power; supersolution; solvability; Dirichlet problem
UR - http://eudml.org/doc/272289
ER -

References

top
  1. [1] B. Abdellaoui and I. Peral, Some results for semilinear elliptic equations with critical potential, Proc. Roy. Soc. Edinburgh 132A (2002), 1–24. Zbl1014.35023MR1884469
  2. [2] B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient, J. Eur. Math. Soc. Sect. A8 (2006), 157–170. Zbl1245.35032MR2239296
  3. [3] B. Abdelahoui and I. Peral, Nonexistence results for quasilinear elliptic equations related to Caffarelli-Kohn-Nirenberg inequalities, Commun. Pure Appl. Anal.2 (2003), 539–566. Zbl1148.35324MR2019067
  4. [4] B. Abdellaoui, A. Dall’Aglio and I. Peral, Some remarks on elliptic problems with critical growth on the gradient, J. Differential Equations222 (2006), 21–62. Zbl05013584MR2200746
  5. [5] B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Cal. Var. Partial Differential Equations23 (2005), 327–345. Zbl1207.35114MR2142067
  6. [6] N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures, SIAM J. Math. Anal.24 (1993), 23-35. Zbl0809.35021MR1199524
  7. [7] H. Berestycki, S. Kamin and G. Sivashinsky, Metastability in a flame front evolution equation, Interfaces Free Bound.3 (2001) 361–392. Zbl0991.35097MR1869585
  8. [8] L. Boccardo, T. Gallouet and F. Murat, “A Unified Presentation of Two Existence Results for Problems with Natural Growth”, Research Notes in Mathematics, Vol. 296, 1993, 127–137, Longman. Zbl0806.35033MR1248641
  9. [9] L. Boccardo, T. Gallouët and L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math.73 (1997), 203–223. Zbl0898.35035MR1616410
  10. [10] L. Boccardo, F. Murat and J.-P. Puel, Existence des solutions non bornées pour certains équations quasi-linéaires, Port. Math., 41 (1982), 507–534. Zbl0524.35041MR766873
  11. [11] L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Cont. Dyn. Syst.16 (2006), 513–523. Zbl05141172MR2257147
  12. [12] H. Brezis and X. Cabré, Some simple nonlinear PDE’s without solution, Boll. Unione. Mat. Ital. Sez. B8 (1998), 223–262. Zbl0907.35048MR1638143
  13. [13] H. Brezis, L. Dupaigne and A. Tesei, On a semilinear equation with inverse-square potential, Selecta Math.11 (2005), 1–7. Zbl1161.35383MR2179651
  14. [14] H. Brezis and A. Ponce, Kato’s inequality when Δ u is a measure, C.R. Math. Acad. Sci. Paris338 (2004), 599–604. Zbl1101.35028MR2056467
  15. [15] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math.53 (1984), 259–275. Zbl0563.46024MR768824
  16. [16] V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal.42 (2000), 1309–1326. Zbl1158.35358MR1780731
  17. [17] K. Hansson, V. G. Maz’ya and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat.37 (1999), 87–120. Zbl1087.35513MR1673427
  18. [18] M. Kardar, G. Parisi and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett.56 (1986), 889–892. Zbl1101.82329
  19. [19] T. Kato, Schrödinger operators with singular potentials, Israel J. Math.13 (1972), 135–148. Zbl0246.35025
  20. [20] J. L. Kazdan and R. J. Kramer, Invariant criteria for existence of solutions to second-order quasilinear elliptic equations, Comm. Pure Appl. Math.31 (1978), 619–645. Zbl0368.35031MR477446
  21. [21] P. L. Lions, “Generalized Solutions of Hamilton-Jacobi Equations”, Pitman Res. Notes Math., Vol. 62, 1982. Zbl0497.35001MR667669
  22. [22] F. Murat, L’injection du cone positif de H - 1 dans W - 1 , q est compacte pour tout q l t ; 2 , J. Math. Pures Appl.60 (1981) 309–322. Zbl0471.46020
  23. [23] V. G. Maz’ja“Sobolev Spaces”, Springer Verlag, Berlin, 1985. MR817985
  24. [24] Z.Q. Wang and M. Willem, Caffarelli-Kohn-Nirenberg inequalities with remainder terms, J. Funct. Anal.203 (2003), 550–568. Zbl1037.26014MR2003359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.