The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Image segmentation with a finite element method

Blaise Bourdin — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

The Mumford-Shah functional for image segmentation is an original approach of the image segmentation problem, based on a minimal energy criterion. Its minimization can be seen as a free discontinuity problem and is based on -convergence and bounded variation functions theories. Some new regularization results, make possible to imagine a finite element resolution method. In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation...

Design-dependent loads in topology optimization

Blaise BourdinAntonin Chambolle — 2003

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the pressure and...

Design-dependent loads in topology optimization

Blaise BourdinAntonin Chambolle — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset  of a reference domain, and the complement of is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure , which is the total work of the pressure...

Page 1

Download Results (CSV)