Design-dependent loads in topology optimization

Blaise Bourdin; Antonin Chambolle

ESAIM: Control, Optimisation and Calculus of Variations (2003)

  • Volume: 9, page 19-48
  • ISSN: 1292-8119

Abstract

top
We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset S of a reference domain, and the complement of S is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure S , which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of S . We propose an approximation of our problem in the framework of Γ -convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.

How to cite

top

Bourdin, Blaise, and Chambolle, Antonin. "Design-dependent loads in topology optimization." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 19-48. <http://eudml.org/doc/245317>.

@article{Bourdin2003,
abstract = {We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset $S$ of a reference domain, and the complement of $S$ is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure $S$, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of $S$. We propose an approximation of our problem in the framework of $\Gamma $-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.},
author = {Bourdin, Blaise, Chambolle, Antonin},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {topology optimization; optimal design; design-dependent loads; $\Gamma $-convergence; diffuse interface method; Gamma-convergence},
language = {eng},
pages = {19-48},
publisher = {EDP-Sciences},
title = {Design-dependent loads in topology optimization},
url = {http://eudml.org/doc/245317},
volume = {9},
year = {2003},
}

TY - JOUR
AU - Bourdin, Blaise
AU - Chambolle, Antonin
TI - Design-dependent loads in topology optimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 19
EP - 48
AB - We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset $S$ of a reference domain, and the complement of $S$ is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure $S$, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of $S$. We propose an approximation of our problem in the framework of $\Gamma $-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.
LA - eng
KW - topology optimization; optimal design; design-dependent loads; $\Gamma $-convergence; diffuse interface method; Gamma-convergence
UR - http://eudml.org/doc/245317
ER -

References

top
  1. [1] G. Alberti, Variational models for phase transitions, an approach via Γ -convergence, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazzo et al. Springer-Verlag (2000) 95-114. Zbl0957.35017MR1757697
  2. [2] G. Allaire, É. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. Zbl0889.73051MR1438681
  3. [3] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). Zbl0990.35001MR1859696
  4. [4] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55-69. Zbl0794.49040MR1261717
  5. [5] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, Mass.-London (1984). Zbl0561.49012MR773850
  6. [6] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67-90. Zbl0702.49009MR1051228
  7. [7] A.C. Barroso and I. Fonseca, Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 527-571. Zbl0804.49013MR1286918
  8. [8] M.P. Bendsøe, Optimization of Structural Topology, Shape and Material. Springer Verlag, Berlin Heidelberg (1995). Zbl0822.73001MR1350791
  9. [9] M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69 (1999) 635-654. Zbl0957.74037
  10. [10] É. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093-1121. Zbl1001.49017MR1898515
  11. [11] B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. Zbl0961.65062MR1771782
  12. [12] B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. Zbl0995.74057MR1745759
  13. [13] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I - interfacial free energy. J. Chem. Phys. 28 (1958) 258-267. 
  14. [14] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. Zbl0947.65076MR1700035
  15. [15] B.-C. Chen and N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37 (2001) 57-70. Zbl0962.74049
  16. [16] L.Q. Chen and J. Shen, Application of semi implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108 (1998) 147-158. Zbl1017.65533
  17. [17] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, New York (2000). Zbl0956.74001MR1763123
  18. [18] A. Cherkaev and R.V. Kohn, Topics in the mathematical modelling of composite materials. Birkhäuser Boston Inc., Boston, MA (1997). Zbl0870.00018MR1493036
  19. [19] P.G. Ciarlet, Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity. Zbl0648.73014MR936420
  20. [20] G. Dal Maso, An introduction to Γ -convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
  21. [21] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English Edition (1999). Translated from the French. Zbl0939.49002MR1727362
  22. [22] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
  23. [23] D. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. Zbl0853.73060MR1247174
  24. [24] K.J. Falconer, The geometry of fractal sets. Cambridge University Press, Cambridge (1986). Zbl0587.28004MR867284
  25. [25] H. Federer, Geometric measure theory. Springer-Verlag, New York (1969). Zbl0176.00801MR257325
  26. [26] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). Zbl0545.49018MR775682
  27. [27] R.B. Haber, C.S. Jog and M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on the perimeter. Struct. Optim. 11 (1996) 1-12. 
  28. [28] V.B. Hammer and N. Olhoff, Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19 (2000) 85-92. 
  29. [29] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
  30. [30] R.V. Kohn and G. Strang, Optimal design in elasticity and plasticity. Internat. J. Numer. Methods Engrg. 22 (1986) 183-188. Zbl0593.73091MR831844
  31. [31] P.H. Leo, J.S Lowengrub and H.J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (1998) 2113-2130. 
  32. [32] L. Modica and S. Mortola. Il limite nella Γ -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. Zbl0364.49006MR473971
  33. [33] L. Modica and S. Mortola, Un esempio di Γ - -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. Zbl0356.49008MR445362
  34. [34] M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. Zbl0953.49024MR1728172
  35. [35] R.H. Nochetto, S. Rovida, M. Paolini and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by mean curvature and related topics (Trento, 1992) de Gruyter, Berlin (1994) 124-149. Zbl0814.35051MR1277396
  36. [36] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. Zbl1056.74061MR1843648
  37. [37] M. Paolini and C. Verdi, Asympto. and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptot. Anal. 5 (1992) 553-574. Zbl0757.65078MR1169358
  38. [38] J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. Zbl0994.74082MR1783559
  39. [39] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). Zbl0547.73026MR711964
  40. [40] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685

Citations in EuDML Documents

top
  1. Elie Bretin, Valerie Perrier, Phase field method for mean curvature flow with boundary constraints
  2. Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
  3. Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
  4. Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
  5. Elie Bretin, Valerie Perrier, Phase field method for mean curvature flow with boundary constraints
  6. Luise Blank, Harald Garcke, M. Hassan Farshbaf-Shaker, Vanessa Styles, Relating phase field and sharp interface approaches to structural topology optimization

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.