Design-dependent loads in topology optimization
Blaise Bourdin; Antonin Chambolle
ESAIM: Control, Optimisation and Calculus of Variations (2003)
- Volume: 9, page 19-48
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBourdin, Blaise, and Chambolle, Antonin. "Design-dependent loads in topology optimization." ESAIM: Control, Optimisation and Calculus of Variations 9 (2003): 19-48. <http://eudml.org/doc/245317>.
@article{Bourdin2003,
abstract = {We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset $S$ of a reference domain, and the complement of $S$ is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure $S$, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of $S$. We propose an approximation of our problem in the framework of $\Gamma $-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.},
author = {Bourdin, Blaise, Chambolle, Antonin},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {topology optimization; optimal design; design-dependent loads; $\Gamma $-convergence; diffuse interface method; Gamma-convergence},
language = {eng},
pages = {19-48},
publisher = {EDP-Sciences},
title = {Design-dependent loads in topology optimization},
url = {http://eudml.org/doc/245317},
volume = {9},
year = {2003},
}
TY - JOUR
AU - Bourdin, Blaise
AU - Chambolle, Antonin
TI - Design-dependent loads in topology optimization
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2003
PB - EDP-Sciences
VL - 9
SP - 19
EP - 48
AB - We present, analyze, and implement a new method for the design of the stiffest structure subject to a pressure load or a given field of internal forces. Our structure is represented as a subset $S$ of a reference domain, and the complement of $S$ is made of two other “phases”, the “void” and a fictitious “liquid” that exerts a pressure force on its interface with the solid structure. The problem we consider is to minimize the compliance of the structure $S$, which is the total work of the pressure and internal forces at the equilibrium displacement. In order to prevent from homogenization we add a penalization on the perimeter of $S$. We propose an approximation of our problem in the framework of $\Gamma $-convergence, based on an approximation of our three phases by a smooth phase-field. We detail the numerical implementation of the approximate energies and show a few experiments.
LA - eng
KW - topology optimization; optimal design; design-dependent loads; $\Gamma $-convergence; diffuse interface method; Gamma-convergence
UR - http://eudml.org/doc/245317
ER -
References
top- [1] G. Alberti, Variational models for phase transitions, an approach via -convergence, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazzo et al. Springer-Verlag (2000) 95-114. Zbl0957.35017MR1757697
- [2] G. Allaire, É. Bonnetier, G.A. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27-68. Zbl0889.73051MR1438681
- [3] G. Allaire, Shape optimization by the homogenization method. Springer-Verlag, New York (2002). Zbl0990.35001MR1859696
- [4] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differential Equations 1 (1993) 55-69. Zbl0794.49040MR1261717
- [5] H. Attouch, Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, Mass.-London (1984). Zbl0561.49012MR773850
- [6] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990) 67-90. Zbl0702.49009MR1051228
- [7] A.C. Barroso and I. Fonseca, Anisotropic singular perturbations - the vectorial case. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 527-571. Zbl0804.49013MR1286918
- [8] M.P. Bendsøe, Optimization of Structural Topology, Shape and Material. Springer Verlag, Berlin Heidelberg (1995). Zbl0822.73001MR1350791
- [9] M.P. Bendsøe and O. Sigmund, Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69 (1999) 635-654. Zbl0957.74037
- [10] É. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093-1121. Zbl1001.49017MR1898515
- [11] B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609-646. Zbl0961.65062MR1771782
- [12] B. Bourdin, G.A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. Zbl0995.74057MR1745759
- [13] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I - interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.
- [14] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. Zbl0947.65076MR1700035
- [15] B.-C. Chen and N. Kikuchi, Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37 (2001) 57-70. Zbl0962.74049
- [16] L.Q. Chen and J. Shen, Application of semi implicit Fourier-spectral method to phase field equations. Comput. Phys. Comm. 108 (1998) 147-158. Zbl1017.65533
- [17] A. Cherkaev, Variational methods for structural optimization. Springer-Verlag, New York (2000). Zbl0956.74001MR1763123
- [18] A. Cherkaev and R.V. Kohn, Topics in the mathematical modelling of composite materials. Birkhäuser Boston Inc., Boston, MA (1997). Zbl0870.00018MR1493036
- [19] P.G. Ciarlet, Mathematical elasticity. Vol. I. North-Holland Publishing Co., Amsterdam (1988). Three-dimensional elasticity. Zbl0648.73014MR936420
- [20] G. Dal Maso, An introduction to -convergence. Birkhäuser, Boston (1993). Zbl0816.49001MR1201152
- [21] I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, English Edition (1999). Translated from the French. Zbl0939.49002MR1727362
- [22] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). Zbl0804.28001MR1158660
- [23] D. Eyre, Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. Zbl0853.73060MR1247174
- [24] K.J. Falconer, The geometry of fractal sets. Cambridge University Press, Cambridge (1986). Zbl0587.28004MR867284
- [25] H. Federer, Geometric measure theory. Springer-Verlag, New York (1969). Zbl0176.00801MR257325
- [26] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). Zbl0545.49018MR775682
- [27] R.B. Haber, C.S. Jog and M.P. Bendsøe, A new approach to variable-topology shape design using a constraint on the perimeter. Struct. Optim. 11 (1996) 1-12.
- [28] V.B. Hammer and N. Olhoff, Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19 (2000) 85-92.
- [29] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
- [30] R.V. Kohn and G. Strang, Optimal design in elasticity and plasticity. Internat. J. Numer. Methods Engrg. 22 (1986) 183-188. Zbl0593.73091MR831844
- [31] P.H. Leo, J.S Lowengrub and H.J. Jou, A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46 (1998) 2113-2130.
- [32] L. Modica and S. Mortola. Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. Zbl0364.49006MR473971
- [33] L. Modica and S. Mortola, Un esempio di -convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285-299. Zbl0356.49008MR445362
- [34] M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim. 20 (1999) 957-982. Zbl0953.49024MR1728172
- [35] R.H. Nochetto, S. Rovida, M. Paolini and C. Verdi, Variational approximation of the geometric motion of fronts, in Motion by mean curvature and related topics (Trento, 1992) de Gruyter, Berlin (1994) 124-149. Zbl0814.35051MR1277396
- [36] S.J. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272-288. Zbl1056.74061MR1843648
- [37] M. Paolini and C. Verdi, Asympto. and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptot. Anal. 5 (1992) 553-574. Zbl0757.65078MR1169358
- [38] J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489-528. Zbl0994.74082MR1783559
- [39] R. Temam, Problèmes mathématiques en plasticité. Gauthier-Villars, Paris (1983). Zbl0547.73026MR711964
- [40] W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). Zbl0692.46022MR1014685
Citations in EuDML Documents
top- Elie Bretin, Valerie Perrier, Phase field method for mean curvature flow with boundary constraints
- Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
- Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
- Patrick Penzler, Martin Rumpf, Benedikt Wirth, A phase-field model for compliance shape optimization in nonlinear elasticity
- Elie Bretin, Valerie Perrier, Phase field method for mean curvature flow with boundary constraints
- Luise Blank, Harald Garcke, M. Hassan Farshbaf-Shaker, Vanessa Styles, Relating phase field and sharp interface approaches to structural topology optimization
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.