An obstruction to homogeneous manifolds being Kähler
Let be a connected complex Lie group, a closed, complex subgroup of and . Let be the radical and a maximal semisimple subgroup of . Attempts to construct examples of noncompact manifolds homogeneous under a nontrivial semidirect product with a not necessarily -invariant Kähler metric motivated this paper. The -orbit in is Kähler. Thus is an algebraic subgroup of [4]. The Kähler assumption on ought to imply the -action on the base of any homogeneous fibration is algebraic...