The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Unique localization of unknown boundaries in a conducting medium from boundary measurements

Bruno Canuto — 2002

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of localizing an inaccessible piece I of the boundary of a conducting medium Ω , and a cavity D contained in Ω , from boundary measurements on the accessible part A of Ω . Assuming that g ( t , σ ) is the given thermal flux for t , σ ( 0 , T ) × A , and that the corresponding output datum is the temperature u ( T 0 , σ ) measured at a given time T 0 for σ A out A , we prove that I and D are uniquely localized from knowledge of all possible pairs of input-output data ( g , u ( T 0 ) A out ) . The same result holds when a mean value of the temperature...

Unique Localization of Unknown Boundaries in a Conducting Medium from Boundary Measurements

Bruno Canuto — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of localizing an inaccessible piece of the boundary of a conducting medium Ω, and a cavity contained in Ω, from boundary measurements on the accessible part of ∂Ω. Assuming that is the given thermal flux for (,σ) ∈ (0,) x A, and that the corresponding output datum is the temperature ,σ) measured at a given time for σ ∈ ⊂ , we prove that and are uniquely localized from knowledge of all possible pairs of input-output...

Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result

Bruno CanutoOtared Kavian — 2004

Bollettino dell'Unione Matematica Italiana

For a bounded and sufficiently smooth domain Ω in R N , N 2 , let λ k k = 1 and φ k k = 1 be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) - div a x φ k + q x φ k = λ k ϱ x φ k  in  Ω , a n φ k = 0  su  Ω . We prove that knowledge of the Dirichlet boundary spectral data λ k k = 1 , φ k | Ω k = 1 determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map γ for a related elliptic problem. Under suitable hypothesis on the coefficients a , q , ϱ their identifiability is then proved. We prove also analogous results for Dirichlet...

Page 1

Download Results (CSV)