Locally finite M-solid varieties of semigroups
An algebra of type τ is said to be locally finite if all its finitely generated subalgebras are finite. A class K of algebras of type τ is called locally finite if all its elements are locally finite. It is well-known (see [2]) that a variety of algebras of the same type τ is locally finite iff all its finitely generated free algebras are finite. A variety V is finitely based if it admits a finite basis of identities, i.e. if there is a finite set σ of identities such that V = ModΣ, the class of...