A Remark on a Theorem of Losert.
Let with card Γ ≥ c (c denotes the continuum). We construct two Radon measures μ,ν on X such that there exist open subsets of X × X which are not measurable for the simple outer product measure. Moreover, these measures are strikingly similar to the Lebesgue product measure: for every finite F ⊆ Γ, the projections of μ and ν onto are equivalent to the F-dimensional Lebesgue measure. We generalize this construction to any compact group of weight ≥ c, by replacing the Lebesgue product measure...
Page 1