The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose and analyze a nonlinear mathematical model of hematopoiesis,
describing the dynamics of stem cell population subject to impulsive
perturbations. This is a system of two age-structured partial differential
equations with impulses. By integrating these equations over the
age, we obtain a system of two nonlinear impulsive differential equations with
several discrete delays. This system describes the evolution of the total
hematopoietic stem cell populations with impulses. We first examine...
Download Results (CSV)