Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the homology of free Lie algebras

Calin Popescu — 1998

Commentationes Mathematicae Universitatis Carolinae

Given a principal ideal domain R of characteristic zero, containing 1 / 2 , and a connected differential non-negatively graded free finite type R -module V , we prove that the natural arrow 𝕃 F H ( V ) F H 𝕃 ( V ) is an isomorphism of graded Lie algebras over R , and deduce thereby that the natural arrow U F H 𝕃 ( V ) F H U 𝕃 ( V ) is an isomorphism of graded cocommutative Hopf algebras over R ; as usual, F stands for free part, H for homology, 𝕃 for free Lie algebra, and U for universal enveloping algebra. Related facts and examples are also considered....

Characteristic zero loop space homology for certain two-cones

Calin Popescu — 1999

Commentationes Mathematicae Universitatis Carolinae

Given a principal ideal domain R of characteristic zero, containing 1/2, and a two-cone X of appropriate connectedness and dimension, we present a sufficient algebraic condition, in terms of Adams-Hilton models, for the Hopf algebra F H ( Ω X ; R ) to be isomorphic with the universal enveloping algebra of some R -free graded Lie algebra; as usual, F stands for free part, H for homology, and Ω for the Moore loop space functor.

Page 1

Download Results (CSV)