The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Quasiharmonic fields and Beltrami operators

Claudia Capone — 2002

Commentationes Mathematicae Universitatis Carolinae

A quasiharmonic field is a pair = [ B , E ] of vector fields satisfying div B = 0 , curl E = 0 , and coupled by a distorsion inequality. For a given , we construct a matrix field 𝒜 = 𝒜 [ B , E ] such that 𝒜 E = B . This remark in particular shows that the theory of quasiharmonic fields is equivalent (at least locally) to that of elliptic PDEs. Here we stress some properties of our operator 𝒜 [ B , E ] and find their applications to the study of regularity of solutions to elliptic PDEs, and to some questions of G-convergence.

Page 1

Download Results (CSV)