The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A Non-standard Version of the Borsuk-Ulam Theorem

Carlos BiasiDenise de Mattos — 2005

Bulletin of the Polish Academy of Sciences. Mathematics

E. Pannwitz showed in 1952 that for any n ≥ 2, there exist continuous maps φ:Sⁿ→ Sⁿ and f:Sⁿ→ ℝ² such that f(x) ≠ f(φ(x)) for any x∈ Sⁿ. We prove that, under certain conditions, given continuous maps ψ,φ:X→ X and f:X→ ℝ², although the existence of a point x∈ X such that f(ψ(x)) = f(φ(x)) cannot always be assured, it is possible to establish an interesting relation between the points f(φ ψ(x)), f(φ²(x)) and f(ψ²(x)) when f(φ(x)) ≠ f(ψ(x)) for any x∈ X, and a non-standard version of the Borsuk-Ulam...

On the Extension of Certain Maps with Values in Spheres

Carlos BiasiAlice K. M. LibardiPedro L. Q. PergherStanisław Spież — 2008

Bulletin of the Polish Academy of Sciences. Mathematics

Let E be an oriented, smooth and closed m-dimensional manifold with m ≥ 2 and V ⊂ E an oriented, connected, smooth and closed (m-2)-dimensional submanifold which is homologous to zero in E. Let S n - 2 S be the standard inclusion, where Sⁿ is the n-sphere and n ≥ 3. We prove the following extension result: if h : V S n - 2 is a smooth map, then h extends to a smooth map g: E → Sⁿ transverse to S n - 2 and with g - 1 ( S n - 2 ) = V . Using this result, we give a new and simpler proof of a theorem of Carlos Biasi related to the ambiental bordism...

Page 1

Download Results (CSV)