On Pták’s generalization of Hankel operators
In 1997 Pták defined generalized Hankel operators as follows: Given two contractions and , an operator is said to be a generalized Hankel operator if and satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of and . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat...