Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On Pták’s generalization of Hankel operators

Carmen H. ManceraPedro José Paúl — 2001

Czechoslovak Mathematical Journal

In 1997 Pták defined generalized Hankel operators as follows: Given two contractions T 1 ( 1 ) and T 2 ( 2 ) , an operator X 1 2 is said to be a generalized Hankel operator if T 2 X = X T 1 * and X satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of T 1 and T 2 . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat...

Page 1

Download Results (CSV)