A variational model for nonlinear elastic plates.
The spectral structure of the infinitesimal generator of a strongly continuous cosine function of linear bounded operators is investigated, under assumptions on the almost periodic behaviour of applications generated, in various ways, by C. Moreover, a first approach is presented to the analysis of connection between cosine functions and dynamical systems.
The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group or an equicontinuous cosine function forces the spectral structure of the infinitesimal generator of or . In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.
The spectral structure of the infinitesimal generator of strongly measurable, asymptotically -almost periodic semigroups is investigated.
By using the notion of contraction of Lie groups, we transfer estimates for joint spectral projectors from the unit complex sphere in to the reduced Heisenberg group hⁿ. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on hⁿ. As a consequence, we prove, in the spirit of Sogge’s work, a discrete restriction theorem for the sub-Laplacian L on hⁿ.
We consider a double analytic family of fractional integrals along the curve , introduced for α = 2 by L. Grafakos in 1993 and defined by , where ψ is a bump function on ℝ supported near the origin, , z,γ ∈ ℂ, Re γ ≥ 0, α ∈ ℝ, α ≥ 2. We determine the set of all (1/p,1/q,Re z) such that maps to boundedly. Our proof is based on product-type kernel arguments. More precisely, we prove that the kernel is a product kernel on ℝ², adapted to the curve ; as a consequence, we show that the operator...
Page 1