Equicontinuous families of operators generating mean periodic maps
- Volume: 10, Issue: 3, page 141-171
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCasarino, Valentina. "Equicontinuous families of operators generating mean periodic maps." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.3 (1999): 141-171. <http://eudml.org/doc/252315>.
@article{Casarino1999,
abstract = {The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group \( U \) or an equicontinuous cosine function \( C \) forces the spectral structure of the infinitesimal generator of \( U \) or \( C \). In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.},
author = {Casarino, Valentina},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Mean periodicity; Equicontinuous groups; Schwartz spectrum; mean periodicity; equicontinuous groups},
language = {eng},
month = {9},
number = {3},
pages = {141-171},
publisher = {Accademia Nazionale dei Lincei},
title = {Equicontinuous families of operators generating mean periodic maps},
url = {http://eudml.org/doc/252315},
volume = {10},
year = {1999},
}
TY - JOUR
AU - Casarino, Valentina
TI - Equicontinuous families of operators generating mean periodic maps
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1999/9//
PB - Accademia Nazionale dei Lincei
VL - 10
IS - 3
SP - 141
EP - 171
AB - The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group \( U \) or an equicontinuous cosine function \( C \) forces the spectral structure of the infinitesimal generator of \( U \) or \( C \). In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.
LA - eng
KW - Mean periodicity; Equicontinuous groups; Schwartz spectrum; mean periodicity; equicontinuous groups
UR - http://eudml.org/doc/252315
ER -
References
top- Arendt, W. - Batty, C.J.K., Almost periodic solutions of first and second order Cauchy problems. J. Diff. Eq., 137, 1997, 363-383. Zbl0879.34046MR1456602DOI10.1006/jdeq.1997.3266
- Arendt, W. - Grabosch, A. - Greiner, G. - Groh, U. - Lotz, H.P. - Moustakas, U. - Nagel, R. - Neubrander, F. - Schlotterbeck, U., One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo1986. MR839450
- Beurling, A., A theorem on functions defined on semigroups. Math. Scand., 1, 1953, 127-130. Zbl0050.33701MR57467
- Bohr, H., Almost periodic functions. Chelsea, New York1947. Zbl0278.42019MR20163
- Carleman, T., L’integrale de Fourier et questions qui s’y rattachent. Almqvist and Wiksell, Uppsala1944. Zbl0060.25504MR14165
- Casarino, V., Quasi-periodicità e uniforme continuità di semigruppi e funzioni coseno: criteri spettrali. Doctoral Dissertation, Politecnico di Torino1998.
- Casarino, V., Spectral properties of weakly almost periodic cosine functions. Rend. Mat. Acc. Lincei, s. 9, vol. 9, 1998, 177-211. Zbl0944.47027MR1683008
- Delsarte, J., Les fonctions moyenne-périodiques. Journal de Mathématiques pures et appliquées, 14, 1935, 403-453. Zbl0013.25405JFM61.1185.02
- Fattorini, H., Ordinary differential equations in linear topological spaces I. J. Differential Equations, 5, 1969, 72-105. Zbl0175.15101MR277860
- Fattorini, H., Ordinary differential equations in linear topological spaces II. J. Differential Equations, 6, 1969, 50-70. Zbl0181.42801MR277861
- Kahane, J.P., Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Annales de l’Institut Fourier, 5, 1954, 39-130. Zbl0064.35903MR75350
- Kahane, J.P., Sur les fonctions moyenne-périodiques bornées. Annales de l’Institut Fourier, 7, 1957, 293-314. Zbl0083.34401MR102702
- Kahane, J.P., Lectures on mean periodic functions. Tata Institut for fundamental Research, Bombay1958. Zbl0099.32301
- Katznelson, Y., An introduction to Harmonic Analysis. John Wiley & Sons, New York - London - Sydney - Toronto1968. Zbl0169.17902MR248482
- Kelley, J.L. - Namioka, I., Linear topological spaces. Springer-Verlag, New York - Heidelberg - Berlin1963. Zbl0318.46001MR166578
- Koosis, P., On functions which are mean periodic on a half-line. Comm. Pure and Appl. Math., 10, 1957, 133-149. Zbl0077.10302MR89297
- Nagy, B., On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged), 36, 1974, 281-290. Zbl0273.47008MR374995
- van Neerven, J.M.A.M., The adjoint of a semigroup of linear operators. Springer-Verlag, Berlin - Heidelberg - New York - Tokyo1992. Zbl0780.47026MR1222650
- van Neerven, J.M.A.M., The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel1996. Zbl0905.47001MR1409370DOI10.1007/978-3-0348-9206-3
- Pazy, A., Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo1983. Zbl0516.47023MR710486DOI10.1007/978-1-4612-5561-1
- Schwartz, L., Theorie générale des fonctions moyenne-périodiques. Annals of Mathematics, 48, 1947, 857-929. Zbl0030.15004MR23948
- Sova, M., Cosine operator functions. Rozprawy Matematyczne, XLIX, Warszawa1966. Zbl0156.15404MR193525
- Vesentini, E., Introduction to continuous semigroups. Scuola Normale Superiore, Pisa1996. Zbl1068.47001MR1736550
- Vesentini, E., Spectral properties of weakly asymptotically almost periodic semigroups. Advances in Math., 128, 1997, 217-241. Zbl0882.22002MR1454398DOI10.1006/aima.1997.1613
- Yosida, K., Functional Analysis. Springer Verlag, Berlin - Heidelberg - New York1968. Zbl0435.46002MR239384
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.