2010 Mathematics Subject Classification: 16R10, 16W55, 15A75.
We survey some recent results on graded Gelfand-Kirillov dimension of PI-algebras over a field F of characteristic 0. In particular, we focus on verbally prime algebras with the grading inherited by that of Vasilovsky and upper triangular matrices, i.e., UTn(F), UTn(E) and UTa,b(E), where E is the infinite dimensional Grassmann algebra.
Let be a finite abelian group with identity element and be an infinite dimensional -homogeneous vector space over a field of characteristic . Let be the Grassmann algebra generated by . It follows that is a -graded algebra. Let be odd, then we prove that in order to describe any ideal of -graded identities of it is sufficient to deal with -grading, where , and if . In the same spirit of the case odd, if is even it is sufficient to study only those -gradings such that...
Download Results (CSV)