The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Weighted integrability and L¹-convergence of multiple trigonometric series

Chang-Pao Chen — 1994

Studia Mathematica

We prove that if c j k 0 as max(|j|,|k|) → ∞, and | j | = 0 ± | k | = 0 ± θ ( | j | ) ϑ ( | k | ) | Δ 12 c j k | < , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and T ² | s m n ( x , y ) - f ( x , y ) | · | ϕ ( x ) ψ ( y ) | d x d y 0 as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums s m n ( x , y ) , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2],...

Uniform convergence of double trigonometric series

Chang-Pao ChenGwo-Bin Chen — 1996

Studia Mathematica

It is shown that under certain conditions on c j k , the rectangular partial sums s m n ( x , y ) converge uniformly on T 2 . These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is | k | = n | Δ c k | = o ( 1 / n ) (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: n c n = o ( 1 ) as...

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao ChenDah-Chin Luor — 2000

Studia Mathematica

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of s m n ( x , y ) ...

Weighted integrability of double cosine series with nonnegative coefficients

Chang-Pao ChenMing-Chuan Chen — 2003

Studia Mathematica

Let f c ( x , y ) j = 1 k = 1 a j k ( 1 - c o s j x ) ( 1 - c o s k y ) with a j k 0 for all j,k ≥ 1. We estimate the integral 0 π 0 π x α - 1 y β - 1 ϕ ( f c ( x , y ) ) d x d y in terms of the coefficients a j k , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].

Page 1

Download Results (CSV)