A condition on the potential for the existence of doubly periodic solutions of a semi-linear fourth-order partial differential equation.
We prove that if as max(|j|,|k|) → ∞, and , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2],...
It is shown that under certain conditions on , the rectangular partial sums converge uniformly on . These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: as...
Let s* denote the maximal function associated with the rectangular partial sums of a given double function series with coefficients . The following generalized Hardy-Littlewood inequality is investigated: , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of ...
Let with for all j,k ≥ 1. We estimate the integral in terms of the coefficients , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].
Page 1