The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

The mean square of the divisor function

Chaohua JiaAyyadurai Sankaranarayanan — 2014

Acta Arithmetica

Let d(n) be the divisor function. In 1916, S. Ramanujan stated without proof that n x d ² ( n ) = x P ( l o g x ) + E ( x ) , where P(y) is a cubic polynomial in y and E ( x ) = O ( x 3 / 5 + ε ) , with ε being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), E ( x ) = O ( x 1 / 2 + ε ) . In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce E ( x ) = O ( x 1 / 2 ( l o g x ) l o g l o g x ) . In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we prove E ( x ) = O ( x 1 / 2 ( l o g x ) ) .

Page 1

Download Results (CSV)