Almost all short intervals containing prime numbers
Let d(n) be the divisor function. In 1916, S. Ramanujan stated without proof that , where P(y) is a cubic polynomial in y and , with ε being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), . In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce . In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we prove .
Page 1