In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system is...
In this paper we study the frequency and
time domain behaviour of a heat exchanger network system.
The system is governed by hyperbolic partial differential
equations. Both the control operator and the observation
operator are unbounded but admissible. Using the theory
of symmetric hyperbolic systems, we prove exponential
stability of the underlying semigroup for the heat exchanger
network. Applying the recent theory of well-posed
infinite-dimensional linear systems, we prove that the
system...
The stabilization with time delay in observation or control represents difficult mathematical challenges in the control of distributed parameter systems. It is well-known that the stability of closed-loop system achieved by some stabilizing output feedback laws may be destroyed by whatever small time delay there exists in observation. In this paper, we are concerned with a particularly interesting case: Boundary output feedback stabilization of a one-dimensional wave equation system for which the...
The stabilization with time delay in observation or control represents difficult
mathematical challenges in the control of distributed parameter systems. It is well-known
that the stability of closed-loop system achieved by some stabilizing output feedback laws
may be destroyed by whatever small time delay there exists in observation. In this paper,
we are concerned with a particularly interesting case: Boundary output feedback
stabilization of a...
In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes...
In this paper we study asymptotic behaviour of distributed parameter systems governed
by partial differential equations (abbreviated to PDE). We first review some recently developed results
on the stability analysis of PDE systems by Lyapunov's second method. On constructing Lyapunov functionals
we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE
systems. Then we apply the result to establish exponential stability of various chemical engineering
processes...
The stabilization with time delay in observation or control represents difficult
mathematical challenges in the control of distributed parameter systems. It is well-known
that the stability of closed-loop system achieved by some stabilizing output feedback laws
may be destroyed by whatever small time delay there exists in observation. In this paper,
we are concerned with a particularly interesting case: Boundary output feedback
stabilization of a...
Download Results (CSV)