Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method

Abdoua Tchousso; Thibaut Besson; Cheng-Zhong Xu

ESAIM: Control, Optimisation and Calculus of Variations (2009)

  • Volume: 15, Issue: 2, page 403-425
  • ISSN: 1292-8119

Abstract

top
In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes and, in particular, exponential stability of heat exchangers. Through concrete examples we show how Lyapunov’s second method may be extended to stability analysis of nonlinear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach spaces L p , 1 < p .

How to cite

top

Tchousso, Abdoua, Besson, Thibaut, and Xu, Cheng-Zhong. "Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method." ESAIM: Control, Optimisation and Calculus of Variations 15.2 (2009): 403-425. <http://eudml.org/doc/245513>.

@article{Tchousso2009,
abstract = {In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes and, in particular, exponential stability of heat exchangers. Through concrete examples we show how Lyapunov’s second method may be extended to stability analysis of nonlinear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach spaces $L^p$, $1&lt;p\le \infty $.},
author = {Tchousso, Abdoua, Besson, Thibaut, Xu, Cheng-Zhong},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {hyperbolic symmetric systems; partial differential equations; exponential stability; strongly continuous semigroups; Lyapunov functionals; heat exchangers},
language = {eng},
number = {2},
pages = {403-425},
publisher = {EDP-Sciences},
title = {Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method},
url = {http://eudml.org/doc/245513},
volume = {15},
year = {2009},
}

TY - JOUR
AU - Tchousso, Abdoua
AU - Besson, Thibaut
AU - Xu, Cheng-Zhong
TI - Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2009
PB - EDP-Sciences
VL - 15
IS - 2
SP - 403
EP - 425
AB - In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering processes and, in particular, exponential stability of heat exchangers. Through concrete examples we show how Lyapunov’s second method may be extended to stability analysis of nonlinear hyperbolic PDE. Meanwhile we explain how the method is adapted to the framework of Banach spaces $L^p$, $1&lt;p\le \infty $.
LA - eng
KW - hyperbolic symmetric systems; partial differential equations; exponential stability; strongly continuous semigroups; Lyapunov functionals; heat exchangers
UR - http://eudml.org/doc/245513
ER -

References

top
  1. [1] F. Alabau, Stabilisation frontière indirecte de systèmes faiblement couplés. C.R. Acad. Sci. Paris Série I 328 (1999) 1015–1020. Zbl0934.93056MR1696198
  2. [2] F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Eq. 2 (2002) 127–150. Zbl1011.35018MR1914654
  3. [3] J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D 27 (1987) 43–62. Zbl0644.73054MR912850
  4. [4] S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behaviour of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Comm. Pure Appl. Math. 60 (2007) 1559–1622. Zbl1152.35009MR2349349
  5. [5] H. Brezis, Analyse fonctionnelle : théorie et applications. Masson, Paris (1983). Zbl0511.46001MR697382
  6. [6] N. Burq and G. Lebeau, Mesure de défaut de compacité, application au système de Lamé. Ann. Sci. École Norm. Sup. 34 (2001) 817–870. Zbl1043.35009MR1872422
  7. [7] A. Chapelon and C.Z. Xu, Boundary control of a class of hyperbolic systems. Eur. J. Control 9 (2003) 589–604. Zbl1293.93101
  8. [8] J.M. Coron, B. d’Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations. European Control Conference ECC’99, Karlsruhe, September (1999). 
  9. [9] J.M. Coron, B. d’Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Control 52 (2007) 2–11. MR2286756
  10. [10] R.F. Curtain and H.J. Zwart, An introduction to infinite-dimensional linear systems theory. Springer-Verlag, New York (1995). Zbl0839.93001MR1351248
  11. [11] B. d’Andréa-Novel, Commande non linéaire des robots. Hermès (1988). 
  12. [12] P. Freitas, Stability results for the wave equation with indefinite damping. J. Diff. Eq. 132 (1996) 338–353. Zbl0878.35067MR1422123
  13. [13] J.M. Greenberg and T.T. Li, The effect of boundary damping for the quasilinear wave equation. J. Diff. Eq. 52 (1984) 66–75. Zbl0576.35080MR737964
  14. [14] C.D. Immanuel, C.F. Cordeiro, S.S. Sundaram, E.S. Meadows, T.J. Crowley and F.J. Doyle III, Modeling of particule size distribution in emulsion co-polymerization: comparaison with experimental data and parameter sensitivity studies. Comput. Chem. Eng. 26 (2002) 1133–1152. 
  15. [15] B. Kalitine, Sur la stabilité des ensembles compacts positivement invariants des systèmes dynamiques. RAIRO-Automatique 16 (1982) 275–286. Zbl0493.93039MR691464
  16. [16] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces. Pergamon Press, Oxford (1964). Zbl0127.06104MR213845
  17. [17] V. Komornik, Exact controllability and stabilization: the multiplier method, Research in Applied Mathematics. Series Editors: P.G. Ciarlet and J.L. Lions, Masson, Paris (1994). Zbl0937.93003MR1359765
  18. [18] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. Zbl0636.93064MR1054123
  19. [19] J.P. LaSalle and S. Lefschetz, Stability by Liapunov’s direct method with applications. Academic Press, New York (1961). Zbl0098.06102MR132876
  20. [20] P.D. Lax and R.S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators. Comm. Pure Appl. Math. 13 (1960) 427–455. Zbl0094.07502MR118949
  21. [21] T.-T. Li, Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics. John Wiley & Sons, New York (1994). Zbl0841.35064MR1291392
  22. [22] A. Liapunov, Problème général de la stabilité du mouvement. Princeton University Press, Princeton, New Jersey (1947). Zbl0031.18403MR21186
  23. [23] J. Liéto, Génie chimique à l’usage des chimistes. Lavoisier, Paris (1998). 
  24. [24] Z.H. Luo, B.Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems with applications. Springer, London (1999). Zbl0922.93001MR1745384
  25. [25] Nasa Technical Memorandum, Progress Report No. 8, in Proceedings of the twenty-fourth seminar on space flight and guidance theory, NASA George G. Marshall space flight center, Huntsville, Alabama, June 3 (1966). 
  26. [26] R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93–98. Zbl0743.93082MR1149353
  27. [27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). Zbl0516.47023MR710486
  28. [28] F. Puel, G. Févotte and J.P. Klein, Simulation and analysis of industrial cristallization processes through multidimensional population balance equation. Part 1: A resolution algorithm based on the method of classes. Chem. Engrg. Sci. 58 (2003) 3715–3727. 
  29. [29] D. Ramkrishna and A.W. Mahoney, Population balancemodeling. Promise for the future. Chem. Engrg. Sci. 57 (2002) 595–606. 
  30. [30] B. Rao, Le taux optimal de décroissance de l’énergie dans l’équation de poutre de Rayleigh. C. R. Acad. Sci. Paris 325 (1997) 737–742. Zbl0894.73072MR1483709
  31. [31] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domain. Indiana Univ. Math. J. 24 (1974) 79–86. Zbl0281.35012MR361461
  32. [32] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. Zbl0397.93001MR508380
  33. [33] D. Serre, Solvability of hyperbolic IBVPS through filtering. Methods Appl. Anal. 12 (2005) 253–266. Zbl1114.35118MR2254009
  34. [34] E. Sontag and H. Sussmann, Further comments on the stabilizability of the angular velocity of a rigid body. Systems Control Lett. 12 (1988) 213–217. Zbl0675.93064MR993944
  35. [35] G. Szegö, On the application of Zubov’s method of constructing Liapunov functions for nonlinear control systems. Transaction of ASME Journal of Basic Eng. Series D 85 (1963) 137–142. 
  36. [36] A. Tchousso, Étude de la stabilité asymptotique de quelques modèles de transfert de chaleur. Ph.D. thesis, University of Claude Bernard - Lyon 1, France (2004). 
  37. [37] A. Tchousso and C.Z. Xu, Exponential stability of symmetric hyperbolic systems using Lyapunov functionals, in Proceedings of the 10th IEEE International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland (2004) 361–364. 
  38. [38] A.J. van der Schaft, Stabilization of Hamiltonian systems. Nonlinear Anal. Methods Appl. 10 (1986) 1021–1035. Zbl0613.93049MR857737
  39. [39] C.Z. Xu and G. Sallet, Exponential stability and transfer functions of a heat exchanger network. Rapport de Recherche de l’INRIA 3823 (1999) 1–21. 
  40. [40] C.Z. Xu and G. Sallet, Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems. ESAIM: COCV 7 (2002) 421–442. Zbl1040.93031MR1925036
  41. [41] C.Z. Xu, J.P. Gauthier and I. Kupka, Exponential stability of the heat exchanger equation, in Proceedings of the European Control Conference, Groningen, The Netherlands (1993) 303–307. 
  42. [42] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109–129. Zbl0769.93017MR1212631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.