Dynamic boundary controls of a rotating body-beam system with time-varying angular velocity.
This paper deals with feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This feedback, which insures the exponential decay of the beam vibrations, extends the case studied by Laousy ...
In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...
In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...
Page 1