The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

A duality-based approach to elliptic control problems in non-reflexive Banach spaces

Christian ClasonKarl Kunisch — 2011

ESAIM: Control, Optimisation and Calculus of Variations

Convex duality is a powerful framework for solving non-smooth optimal control problems. However, for problems set in non-reflexive Banach spaces such as L(Ω) or BV(Ω), the dual problem is formulated in a space which has difficult measure theoretic structure. The predual problem, on the other hand, can be formulated in a Hilbert space and entails the minimization of a smooth functional with box constraints, for which efficient numerical methods exist. In this work, elliptic control problems with...

A duality-based approach to elliptic control problems in non-reflexive Banach spaces

Christian ClasonKarl Kunisch — 2011

ESAIM: Control, Optimisation and Calculus of Variations

Convex duality is a powerful framework for solving non-smooth optimal control problems. However, for problems set in non-reflexive Banach spaces such as L(Ω) or BV(Ω), the dual problem is formulated in a space which has difficult measure theoretic structure. The predual problem, on the other hand, can be formulated in a Hilbert space and entails the minimization of a smooth functional with box constraints, for which efficient numerical methods exist. In this work, elliptic control problems with...

Minimal invasion: An optimal L∞ state constraint problem

Christian ClasonKazufumi ItoKarl Kunisch — 2011

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

A minimum effort optimal control problem for elliptic PDEs

Christian ClasonKazufumi ItoKarl Kunisch — 2012

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion equation...

Minimal invasion: An optimal L state constraint problem

Christian ClasonKazufumi ItoKarl Kunisch — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

A minimum effort optimal control problem for elliptic PDEs

Christian ClasonKazufumi ItoKarl Kunisch — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

This work is concerned with a class of minimum effort problems for partial differential equations, where the control cost is of L-type. Since this problem is non-differentiable, a regularized functional is introduced that can be minimized by a superlinearly convergent semi-smooth Newton method. Uniqueness and convergence for the solutions to the regularized problem are addressed, and a continuation strategy based on a model function is proposed. Numerical examples for a convection-diffusion equation...

Page 1

Download Results (CSV)