Fonctions méromorphes dans le cercle-unité et leurs séries de Taylor
Dans la première partie, on établit essentiellement qu’il existe des suites d’inégalités rationnelles sur les coefficients de Taylor d’une fonction holomorphe à l’origine, constituant une condition nécessaire et suffisante pour que cette fonction soit méromorphe dans le cercle-unité, y ait un nombre donné de pôles, et soit bornée par un en module sur la circonférence-unité. La seconde partie traite des fonctions méromorphes dans le cercle-unité ayant un développement en série de Taylor au voisinage...