We prove the existence of a limit distribution of the normalized well-distribution measure (as ) for random binary sequences , by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.
We prove a correspondence principle between multivariate functions of bounded variation in the sense of Hardy and Krause and signed measures of finite total variation, which allows us to obtain a simple proof of a generalized Koksma-Hlawka inequality for non-uniform measures. Applications of this inequality to importance sampling in Quasi-Monte Carlo integration and tractability theory are given. We also discuss the problem of transforming a low-discrepancy sequence with respect to the uniform measure...
We prove several results concerning the existence of low-discrepancy point sets with respect to an arbitrary non-uniform measure μ on the d-dimensional unit cube. We improve a theorem of Beck, by showing that for any d ≥ 1, N ≥ 1, and any non-negative, normalized Borel measure μ on there exists a point set whose star-discrepancy with respect to μ is of order
.
For the proof we use a theorem of Banaszczyk concerning the balancing of vectors, which implies an upper bound for the linear discrepancy...
The law of the iterated logarithm for discrepancies of lacunary sequences is studied. An optimal bound is given under a very mild Diophantine type condition.
Upper bounds for GCD sums of the form are established, where is any sequence of distinct positive integers and ; the estimate for solves in particular a problem of Dyer and Harman from 1986, and the estimates are optimal except possibly for . The method of proof is based on identifying the sum as a certain Poisson integral on a polydisc; as a byproduct, estimates for the largest eigenvalues of the associated GCD matrices are also found. The bounds for such GCD sums are used to establish...
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
Download Results (CSV)