On the limit distribution of the well-distribution measure of random binary sequences
- [1] TU Graz, Department of Analysis and Computational Number Theory (Math A), Steyrergasse 30/II 8010 Graz, Austria
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 245-259
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topAistleitner, Christoph. "On the limit distribution of the well-distribution measure of random binary sequences." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 245-259. <http://eudml.org/doc/275695>.
@article{Aistleitner2013,
abstract = {We prove the existence of a limit distribution of the normalized well-distribution measure $W(E_N)/\sqrt\{N\}$ (as $N \rightarrow \infty $) for random binary sequences $E_N$, by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.},
affiliation = {TU Graz, Department of Analysis and Computational Number Theory (Math A), Steyrergasse 30/II 8010 Graz, Austria},
author = {Aistleitner, Christoph},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {9},
number = {2},
pages = {245-259},
publisher = {Société Arithmétique de Bordeaux},
title = {On the limit distribution of the well-distribution measure of random binary sequences},
url = {http://eudml.org/doc/275695},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Aistleitner, Christoph
TI - On the limit distribution of the well-distribution measure of random binary sequences
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 245
EP - 259
AB - We prove the existence of a limit distribution of the normalized well-distribution measure $W(E_N)/\sqrt{N}$ (as $N \rightarrow \infty $) for random binary sequences $E_N$, by this means solving a problem posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.
LA - eng
UR - http://eudml.org/doc/275695
ER -
References
top- N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl, Measures of pseudorandomness for finite sequences: minimal values. Combin. Probab. Comput. 15(1-2) (2006), 1–29. Zbl1084.11043MR2195573
- N. Alon, Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. (3), 95(3) (2007), 778–812. Zbl1124.68084MR2368283
- N. Alon, S. Litsyn, and A. Shpunt. Typical peak sidelobe level of binary sequences. IEEE Trans. Inform. Theory, 56(1) (2010), 545–554. MR2589463
- I. Berkes, W. Philipp, and R. F. Tichy. Empirical processes in probabilistic number theory: the LIL for the discrepancy of . Illinois J. Math., 50(1-4) (2006), 107–145. Zbl1145.11058MR2247826
- I. Berkes, W. Philipp, and R. F. Tichy. Pseudorandom numbers and entropy conditions. J. Complexity, 23(4-6) (2007), 516–527. Zbl1133.11045MR2372011
- P. Billingsley. /it Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons Inc., New York, second edition (1999). Zbl0172.21201MR1700749
- J. Cassaigne, C. Mauduit, and A. Sárközy. On finite pseudorandom binary sequences. VII. The measures of pseudorandomness. Acta Arith., 103(2) (2002), 97–118. Zbl1126.11330MR1904866
- W. Feller. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Statistics, 22 (1951), 427–432. Zbl0043.34201MR42626
- P. Hubert, C. Mauduit, and A. Sárközy. On pseudorandom binary lattices. Acta Arith., 125(1) (2006), 51–62. Zbl1155.11044MR2275217
- Y. Kohayakawa, C. Mauduit, C. G. Moreira, and V. Rödl. Measures of pseudorandomness for finite sequences: minimum and typical values. In Proceedings of WORDS’03, volume 27 of TUCS Gen. Publ., (2003), 159–169. Turku Cent. Comput. Sci., Turku. Zbl1183.11043MR2081349
- C. Mauduit and A. Sárközy. On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith., 82(4) (1997), 365–377. Zbl0886.11048MR1483689
- A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, (1996). Zbl0862.60002MR1385671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.