An uniform boundedness for Bochner-Riesz operators related to the Hankel transform.
We define and investigate the conjugate operator for Fourier-Bessel expansions. Weighted norm and weak type (1,1) inequalities are proved for this operator by using a local version of the Calderón-Zygmund theory, with weights in most cases more general than weights. Also results on Poisson and conjugate Poisson integrals are furnished for the expansions considered. Finally, an alternative conjugate operator is discussed.
We study dual integral equations associated with Hankel transforms, that is, dual integral equations of Titchmarsh’s type. We reformulate these equations giving a better description in terms of continuous operators on spaces, and we solve them in these spaces. The solution is given both as an operator described in terms of integrals and as a series which converges in the -norm and almost everywhere, where denotes the Bessel function of order ν. Finally, we study the uniqueness of the solution....
Page 1