In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
This paper concerns the discretization of multiphase Darcy flows, in the case of
heterogeneous anisotropic porous media and general 3D meshes used in practice to represent
reservoir and basin geometries. An unconditionally coercive and symmetric vertex centred
approach is introduced in this paper. This scheme extends the Vertex Approximate Gradient
scheme (VAG), already introduced for single phase diffusive problems in [9], to multiphase
Darcy flows....
Download Results (CSV)