Universal properties and derived Kan extensions. (Propriétés universelles et extensions de Kan dérivées.)
Ces notes sont consacrées à la construction de dérivateurs à partir d’une nouvelle notion de catégorie de modèles assez générale pour recouvrir les théories de Quillen, Thomason et Brown. On développe en particulier la théorie des catégories exactes dérivables (par exemple les catégories de Frobenius et les catégories biWaldhausen compliciales vérifiant de bonnes propriétés de stabilité homotopique), lesquelles donnent lieu à des dérivateurs triangulés. On donne une caractérisation combinatoire...
Ces notes sont consacrées à la construction des limites homotopiques, et plus généralement, des images directes cohomologiques dans une catégorie de modèles arbitraire admettant des petites limites projectives. En outre, la théorie des dérivateurs de Grothendieck est introduite, à la fois en tant que motivation pour l’étude de telles structures, et en tant qu’outil de démonstration.
Page 1