On the periodicity of trigonometric functions generalized to quotient rings of R[x]
We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.