The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and
the orbit space of the 3-sphere
with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆
. Given a point a ∈
, we show that there is no map f:K →
which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.
Let K be a CW-complex of dimension 3 such that H³(K;ℤ) = 0, and M a closed manifold of dimension 3 with a base point a ∈ M. We study the problem of existence of a map f: K → M which is strongly surjective, i.e. such that MR[f,a] ≠ 0. In particular if M = S¹ × S² we show that there is no f: K → S¹ × S² which is strongly surjective. On the other hand, for M the non-orientable S¹-bundle over S² there exists a complex K and f: K → M such that MR[f,a] ≠ 0.
Given a map f: X→Y and a Nielsen root class, there is a number associated to this root class, which is the minimal number of points among all root classes which are H-related to the given one for all homotopies H of the map f. We show that for maps between closed surfaces it is possible to deform f such that all the Nielsen root classes have cardinality equal to the minimal number if and only if either N R[f]≤1, or N R[f]>1 and f satisfies the Wecken property. Here N R[f] denotes the Nielsen...
In this paper we develop the notion of contact orders for pairs of continuous self-maps (f, g) from ℝn, showing that the set Con(f, g) of all possible contact orders between f and g is a topological invariant (we remark that Con(f, id) = Per(f)). As an interesting application of this concept, we give sufficient conditions for the graphs of two continuous self-maps from ℝ intersect each other. We also determine the ordering of the sets Con(f, 0) and Con(f, h), for h ∈ Hom(ℝ) such that f ∘ h = h ∘...
Download Results (CSV)