Helson sets and simultaneous extensions to Fourier transforms
Let G be a compact abelian group with dual group Γ and let ε > 0. A set E ⊂ Γ is a “weak ε-Kronecker set” if for every φ:E → there exists x in the dual of Γ such that |φ(γ)- γ(x)| ≤ ε for all γ ∈ E. When ε < √2, every bounded function on E is known to be the restriction of a Fourier-Stieltjes transform of a discrete measure. (Such sets are called I₀.) We show that for every infinite set E there exists a weak 1-Kronecker subset F, of the same cardinality as E, provided there are not “too many”...
Pisier's characterization of Sidon sets as containing proportional-sized quasi-independent subsets is given a sharper form for groups with only a finite number of elements having orders a power of 2. No such improvement is possible for a general Sidon subset of a group having an infinite number of elements of order 2. The method used also gives several sharper forms of Ramsey's characterization of Sidon sets as containing proportional-sized I₀-subsets in a uniform way, again in groups containing...
Let U be an open subset of a locally compact abelian group G and let E be a subset of its dual group Γ. We say E is I₀(U) if every bounded sequence indexed by E can be interpolated by the Fourier transform of a discrete measure supported on U. We show that if E·Δ is I₀ for all finite subsets Δ of a torsion-free Γ, then for each open U ⊂ G there exists a finite set F ⊂ E such that E∖F is I₀(U). When G is connected, F can be taken to be empty. We obtain a much stronger form of that for Hadamard sets...
A subset E of a discrete abelian group is a "Fatou-Zygmund interpolation set" (FZI₀ set) if every bounded Hermitian function on E is the restriction of the Fourier-Stieltjes transform of a discrete, non-negative measure. We show that every infinite subset of a discrete abelian group contains an FZI₀ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are FZI₀ (with that stronger interpolation property). ...
Page 1