We introduce and investigate a class of non-separable tree-like Banach spaces. As a consequence, we prove that we cannot achieve a satisfactory extension of Rosenthal's ℓ₁-theorem to spaces of the type ℓ₁(κ) for κ an uncountable cardinal.
Suppose that is a Fréchet space, is a regular method of summability and is a bounded sequence in . We prove that there exists a subsequence of such that: either (a) all the subsequences of are summable to a common limit with respect to ; or (b) no subsequence of is summable with respect to . This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some -locally convex spaces...
We consider a Banach space, which comes naturally from and it appears in the literature, and we prove that this space has the fixed point property for non-expansive mappings defined on weakly compact, convex sets.
Download Results (CSV)