The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Waring's number for large subgroups of ℤ*ₚ*

Todd CochraneDerrick HartChristopher PinnerCraig Spencer — 2014

Acta Arithmetica

Let p be a prime, ℤₚ be the finite field in p elements, k be a positive integer, and A be the multiplicative subgroup of nonzero kth powers in ℤₚ. The goal of this paper is to determine, for a given positive integer s, a value tₛ such that if |A| ≫ tₛ then every element of ℤₚ is a sum of s kth powers. We obtain t = p 22 / 39 + ϵ , t = p 15 / 29 + ϵ and for s ≥ 6, t = p ( 9 s + 45 ) / ( 29 s + 33 ) + ϵ . For s ≥ 24 further improvements are made, such as t 32 = p 5 / 16 + ϵ and t 128 = p 1 / 4 .

Page 1

Download Results (CSV)