The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Complex projective elliptic surfaces endowed with a numerically effective line bundle of arithmetic genus two are studied and partially classified. A key role is played by elliptic quasi-bundles, where some ideas developed by Serrano in order to study ample line bundles apply to this more general situation.
Some inequalities between the class and the degree of a smooth complex projective manifold are given. Application to the case of low sectional genus are supplied.
Download Results (CSV)