Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Investigation of smooth functions and analytic sets using fractal dimensions

Emma D'Aniello — 2004

Bollettino dell'Unione Matematica Italiana

We start from the following problem: given a function f : 0 , 1 0 , 1 what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of C n functions. We investigate the analogous problem for C n , a functions. These are in a certain way intermediate between C n and C n + 1 functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.

Chaotic behaviour of the map x ↦ ω(x, f)

Emma D’AnielloTimothy Steele — 2014

Open Mathematics

Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and...

Page 1

Download Results (CSV)