The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

A splitting theory for the space of distributions

P. DomańskiD. Vogt — 2000

Studia Mathematica

The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'

Standard exact projective resolutions relative to a countable class of Fréchet spaces

P. DomańskiJ. KroneD. Vogt — 1997

Studia Mathematica

We will show that for each sequence of quasinormable Fréchet spaces ( E n ) there is a Köthe space λ such that E x t 1 ( λ ( A ) , λ ( A ) = E x t 1 ( λ ( A ) , E n ) = 0 and there are exact sequences of the form . . . λ ( A ) λ ( A ) λ ( A ) λ ( A ) E n 0 . If, for a fixed ℕ, E n is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form 0 λ ( A ) λ ( A ) E n 0 . The result has some applications in the theory of the functor E x t 1 in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.

Page 1

Download Results (CSV)