Standard exact projective resolutions relative to a countable class of Fréchet spaces

P. Domański; J. Krone; D. Vogt

Studia Mathematica (1997)

  • Volume: 123, Issue: 3, page 275-290
  • ISSN: 0039-3223

Abstract

top
We will show that for each sequence of quasinormable Fréchet spaces ( E n ) there is a Köthe space λ such that E x t 1 ( λ ( A ) , λ ( A ) = E x t 1 ( λ ( A ) , E n ) = 0 and there are exact sequences of the form . . . λ ( A ) λ ( A ) λ ( A ) λ ( A ) E n 0 . If, for a fixed ℕ, E n is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form 0 λ ( A ) λ ( A ) E n 0 . The result has some applications in the theory of the functor E x t 1 in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.

How to cite

top

Domański, P., Krone, J., and Vogt, D.. "Standard exact projective resolutions relative to a countable class of Fréchet spaces." Studia Mathematica 123.3 (1997): 275-290. <http://eudml.org/doc/216393>.

@article{Domański1997,
abstract = {We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → \{E_n\} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → \{E_n\} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.},
author = {Domański, P., Krone, J., Vogt, D.},
journal = {Studia Mathematica},
keywords = {Fréchet spaces; Köthe sequence spaces; splitting of short exact sequences; nuclear spaces; Schwartz spaces; quasinormable spaces; functor $Ext^1$; projective spaces; projective resolution; quasinormable Fréchet spaces; Köthe space; exact sequences; functor ; substitute for nonexisting projective resolutions},
language = {eng},
number = {3},
pages = {275-290},
title = {Standard exact projective resolutions relative to a countable class of Fréchet spaces},
url = {http://eudml.org/doc/216393},
volume = {123},
year = {1997},
}

TY - JOUR
AU - Domański, P.
AU - Krone, J.
AU - Vogt, D.
TI - Standard exact projective resolutions relative to a countable class of Fréchet spaces
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 3
SP - 275
EP - 290
AB - We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → {E_n} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → {E_n} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
LA - eng
KW - Fréchet spaces; Köthe sequence spaces; splitting of short exact sequences; nuclear spaces; Schwartz spaces; quasinormable spaces; functor $Ext^1$; projective spaces; projective resolution; quasinormable Fréchet spaces; Köthe space; exact sequences; functor ; substitute for nonexisting projective resolutions
UR - http://eudml.org/doc/216393
ER -

References

top
  1. [A1] H. Apiola, Every nuclear Fréchet space is a quotient of a Köthe Schwartz space, Arch. Math. (Basel) 35 (1980), 559-573. Zbl0437.46004
  2. [A2] H. Apiola, Characterization of subspaces and quotients of nuclear L f ( α , ) -spaces, Compositio Math. 50 (1983), 165-181. 
  3. [D1] P. Domański, On the projective LB-spaces, Note Mat. (Lecce), Spec. Vol. to the memory of G. Köthe, 12 (1992), 43-48. Zbl0806.46004
  4. [DV] P. Domański and D. Vogt, A splitting theorem for the space of smooth functions, preprint, 1994. 
  5. [G1] V. A. Gejler, On extending and lifting continuous linear mappings in topological vector spaces, Studia Math. 62 (1978), 295-303. Zbl0398.46007
  6. [G2] V. A. Gejler, On projective objects in the category of locally convex spaces, Funktsional. Anal. i Prilozhen. 6 (1972), 79-80 (in Russian). 
  7. [J] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1980. 
  8. [K] G. Köthe, Topological Vector Spaces, Springer, Berlin, 1969. Zbl0179.17001
  9. [K1] G. Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181-195. Zbl0141.11605
  10. [Kr] J. Krone, Zur topologischen Charakterisierung von Unter- und Quotientenräumen spezieller nuklearer Kötheräume mit der Splittingmethode, Diplomarbeit, Wuppertal, 1984. 
  11. [KrV] J. Krone and D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400. Zbl0586.46005
  12. [MV1] R. Meise and D. Vogt, A characterization of quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. Zbl0583.46002
  13. [MV] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992. 
  14. [P1] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1) (1971), 1-64. 
  15. [P2] V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian). Zbl0175.41801
  16. [V1] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
  17. [V2] D. Vogt, Subspaces and quotient spaces of s, in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1977, 167-187. 
  18. [V3] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. Zbl0539.46009
  19. [V4] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. L. Zapata (ed.), Lecture Notes Pure Appl. Math. 83, Marcel Dekker, New York, 1983, 405-443. 
  20. [V5] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1984, 349-381. 
  21. [V6] D. Vogt, On the functors E x t 1 ( E , F ) for Fréchet spaces, Studia Math. 85 (1987), 163-197. Zbl0651.46001
  22. [V7] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. Zbl0655.46008
  23. [VW1] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. Zbl0464.46010
  24. [VW2] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. Zbl0402.46008
  25. [VWd] D. Vogt and V. Walldorf, Two results on Fréchet Schwartz spaces, Arch. Math. (Basel) 41 (1993), 459-464. Zbl0814.46003
  26. [W] M. J. Wagner, Jeder nukleare (F)-Raum ist Quotient eines nuklearen Köthe-Raumes, Arch. Math. (Basel) 41 (1983), 169-175. Zbl0548.46004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.