Standard exact projective resolutions relative to a countable class of Fréchet spaces
P. Domański; J. Krone; D. Vogt
Studia Mathematica (1997)
- Volume: 123, Issue: 3, page 275-290
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topDomański, P., Krone, J., and Vogt, D.. "Standard exact projective resolutions relative to a countable class of Fréchet spaces." Studia Mathematica 123.3 (1997): 275-290. <http://eudml.org/doc/216393>.
@article{Domański1997,
abstract = {We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → \{E_n\} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → \{E_n\} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.},
author = {Domański, P., Krone, J., Vogt, D.},
journal = {Studia Mathematica},
keywords = {Fréchet spaces; Köthe sequence spaces; splitting of short exact sequences; nuclear spaces; Schwartz spaces; quasinormable spaces; functor $Ext^1$; projective spaces; projective resolution; quasinormable Fréchet spaces; Köthe space; exact sequences; functor ; substitute for nonexisting projective resolutions},
language = {eng},
number = {3},
pages = {275-290},
title = {Standard exact projective resolutions relative to a countable class of Fréchet spaces},
url = {http://eudml.org/doc/216393},
volume = {123},
year = {1997},
}
TY - JOUR
AU - Domański, P.
AU - Krone, J.
AU - Vogt, D.
TI - Standard exact projective resolutions relative to a countable class of Fréchet spaces
JO - Studia Mathematica
PY - 1997
VL - 123
IS - 3
SP - 275
EP - 290
AB - We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → {E_n} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → {E_n} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
LA - eng
KW - Fréchet spaces; Köthe sequence spaces; splitting of short exact sequences; nuclear spaces; Schwartz spaces; quasinormable spaces; functor $Ext^1$; projective spaces; projective resolution; quasinormable Fréchet spaces; Köthe space; exact sequences; functor ; substitute for nonexisting projective resolutions
UR - http://eudml.org/doc/216393
ER -
References
top- [A1] H. Apiola, Every nuclear Fréchet space is a quotient of a Köthe Schwartz space, Arch. Math. (Basel) 35 (1980), 559-573. Zbl0437.46004
- [A2] H. Apiola, Characterization of subspaces and quotients of nuclear -spaces, Compositio Math. 50 (1983), 165-181.
- [D1] P. Domański, On the projective LB-spaces, Note Mat. (Lecce), Spec. Vol. to the memory of G. Köthe, 12 (1992), 43-48. Zbl0806.46004
- [DV] P. Domański and D. Vogt, A splitting theorem for the space of smooth functions, preprint, 1994.
- [G1] V. A. Gejler, On extending and lifting continuous linear mappings in topological vector spaces, Studia Math. 62 (1978), 295-303. Zbl0398.46007
- [G2] V. A. Gejler, On projective objects in the category of locally convex spaces, Funktsional. Anal. i Prilozhen. 6 (1972), 79-80 (in Russian).
- [J] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1980.
- [K] G. Köthe, Topological Vector Spaces, Springer, Berlin, 1969. Zbl0179.17001
- [K1] G. Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181-195. Zbl0141.11605
- [Kr] J. Krone, Zur topologischen Charakterisierung von Unter- und Quotientenräumen spezieller nuklearer Kötheräume mit der Splittingmethode, Diplomarbeit, Wuppertal, 1984.
- [KrV] J. Krone and D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400. Zbl0586.46005
- [MV1] R. Meise and D. Vogt, A characterization of quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141-150. Zbl0583.46002
- [MV] R. Meise and D. Vogt, Einführung in die Funktionalanalysis, Vieweg, Braunschweig, 1992.
- [P1] V. P. Palamodov, Homological methods in the theory of locally convex spaces, Uspekhi Mat. Nauk 26 (1) (1971), 3-66 (in Russian); English transl.: Russian Math. Surveys 26 (1) (1971), 1-64.
- [P2] V. P. Palamodov, Functor of projective limit in the category of topological vector spaces, Mat. Sb. 75 (1968), 567-603 (in Russian). Zbl0175.41801
- [V1] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. Zbl0337.46015
- [V2] D. Vogt, Subspaces and quotient spaces of s, in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1977, 167-187.
- [V3] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math. 71 (1982), 251-270. Zbl0539.46009
- [V4] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. L. Zapata (ed.), Lecture Notes Pure Appl. Math. 83, Marcel Dekker, New York, 1983, 405-443.
- [V5] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, Amsterdam, 1984, 349-381.
- [V6] D. Vogt, On the functors for Fréchet spaces, Studia Math. 85 (1987), 163-197. Zbl0651.46001
- [V7] D. Vogt, On the characterization of subspaces and quotient spaces of stable power series spaces of finite type, Arch. Math. (Basel) 50 (1988), 463-469. Zbl0655.46008
- [VW1] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. Zbl0464.46010
- [VW2] D. Vogt and M. J. Wagner, Charakterisierung der Unterräume und Quotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ, Studia Math. 70 (1981), 63-80. Zbl0402.46008
- [VWd] D. Vogt and V. Walldorf, Two results on Fréchet Schwartz spaces, Arch. Math. (Basel) 41 (1993), 459-464. Zbl0814.46003
- [W] M. J. Wagner, Jeder nukleare (F)-Raum ist Quotient eines nuklearen Köthe-Raumes, Arch. Math. (Basel) 41 (1983), 169-175. Zbl0548.46004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.