In this paper we present theoretical, computational, and practical aspects concerning 3-dimensional shape optimization governed by linear magnetostatics. The state solution is approximated by the finite element method using Nédélec elements on tetrahedra. Concerning optimization, the shape controls the interface between the air and the ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal shape. Then we state a finite element approximation to the optimization...
We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At...
We give details of the theory of primal domain decomposition (DD) methods for a 2-dimensional second order elliptic equation with homogeneous Dirichlet boundary conditions and jumping coefficients. The problem is discretized by the finite element method. The computational domain is decomposed into triangular subdomains that align with the coefficients jumps. We prove that the condition number of the vertex-based DD preconditioner is , independently of the coefficient jumps, where and denote...
Download Results (CSV)