We compute explicitly the best constants and, by solving some functional equations, we find all maximizers for homogeneous Strichartz estimates for the Schrödinger equation and for the wave equation in the cases when the Lebesgue exponent is an even integer.
I will start with a short review of the classical restriction theorem for the sphere and Strichartz estimates for the wave equation. I then plan to give a detailed presentation of their recent generalizations in the form of “Bilinear Estimates”. In addition to the theory, which is now quite well developed, I plan to discuss a more general point of view concerning the theory. By investigating simple examples I will derive necessary conditions for such estimates to be true. I also plan to discuss...
We prove almost optimal local well-posedness for the coupled Dirac–Klein–Gordon (DKG) system of equations in dimensions. The proof relies on the null structure of the system, combined with bilinear spacetime estimates of Klainerman–Machedon type. It has been
known for some time that the Klein–Gordon part of the system has a null structure; here we uncover an additional null structure in the Dirac equation, which cannot be seen directly, but appears after a duality argument.
Download Results (CSV)