The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive

Daniel Guin — 1995

Annales de l'institut Fourier

Dans cet article, nous définissons des modules de (co)-homologie 0 ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) , ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) 𝔊 et 𝔄 sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si A est une k -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique H C 1 ( A ) avec un analogue additif du groupe de K -théorie de Milnor K 2 Madd ( A ) .

Page 1

Download Results (CSV)