The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Functigraphs: An extension of permutation graphs

Andrew ChenDaniela FerreroRalucca GeraEunjeong Yi — 2011

Mathematica Bohemica

Let G 1 and G 2 be copies of a graph G , and let f : V ( G 1 ) V ( G 2 ) be a function. Then a functigraph C ( G , f ) = ( V , E ) is a generalization of a permutation graph, where V = V ( G 1 ) V ( G 2 ) and E = E ( G 1 ) E ( G 2 ) { u v : u V ( G 1 ) , v V ( G 2 ) , v = f ( u ) } . In this paper, we study colorability and planarity of functigraphs.

Containers and wide diameters of P 3 ( G )

Daniela FerreroManju K. MenonA. Vijayakumar — 2012

Mathematica Bohemica

The P 3 intersection graph of a graph G has for vertices all the induced paths of order 3 in G . Two vertices in P 3 ( G ) are adjacent if the corresponding paths in G are not disjoint. A w -container between two different vertices u and v in a graph G is a set of w internally vertex disjoint paths between u and v . The length of a container is the length of the longest path in it. The w -wide diameter of G is the minimum number l such that there is a w -container of length at most l between any pair of different...

Page 1

Download Results (CSV)