The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Large time behaviour of a class of solutions of second order conservation laws

Jan GoncerzewiczDanielle Hilhorst — 2000

Banach Center Publications

% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.

Existence and nonexistence of solutions for a model of gravitational interaction of particles, II

Piotr BilerDanielle HilhorstTadeusz Nadzieja — 1994

Colloquium Mathematicae

We study the existence and nonexistence in the large of radial solutions to a parabolic-elliptic system with natural (no-flux) boundary conditions describing the gravitational interaction of particles. The blow-up of solutions defined in the n-dimensional ball with large initial data is connected with the nonexistence of radial stationary solutions with a large mass.

A well-posedness result for a mass conserved Allen-Cahn equation with nonlinear diffusion

Kettani, Perla ElHilhorst, DanielleLee, Kai — 2017

Proceedings of Equadiff 14

In this paper, we prove the existence and uniqueness of the solution of the initial boundary value problem for a stochastic mass conserved Allen-Cahn equation with nonlinear diffusion together with a homogeneous Neumann boundary condition in an open bounded domain of n with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion.

Page 1

Download Results (CSV)