The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Distributional derivatives of functions of two variables of finite variation and their application to an impulsive hyperbolic equation

Dariusz Idczak — 1998

Czechoslovak Mathematical Journal

We give characterizations of the distributional derivatives D 1 , 1 , D 1 , 0 , D 0 , 1 of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given.

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak — 2017

Czechoslovak Mathematical Journal

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Page 1

Download Results (CSV)