Functions of finite fractional variation and their applications to fractional impulsive equations
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 1, page 171-195
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topIdczak, Dariusz. "Functions of finite fractional variation and their applications to fractional impulsive equations." Czechoslovak Mathematical Journal 67.1 (2017): 171-195. <http://eudml.org/doc/287928>.
@article{Idczak2017,
abstract = {We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.},
author = {Idczak, Dariusz},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula; distributional derivatives; locally finite variation; impulsive hyperbolic equation},
language = {eng},
number = {1},
pages = {171-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Functions of finite fractional variation and their applications to fractional impulsive equations},
url = {http://eudml.org/doc/287928},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Idczak, Dariusz
TI - Functions of finite fractional variation and their applications to fractional impulsive equations
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 171
EP - 195
AB - We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.
LA - eng
KW - finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula; distributional derivatives; locally finite variation; impulsive hyperbolic equation
UR - http://eudml.org/doc/287928
ER -
References
top- Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H., 10.1007/s10492-011-0004-5, Appl. Math., Praha 56 (2011), 227-250. (2011) Zbl1224.34207MR2810245DOI10.1007/s10492-011-0004-5
- Bainov, D. D., Simeonov, P. S., Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Series in Mathematics and Its Applications, Ellis Horwood Limited, Chichester; Halsted Press, New York (1989). (1989) Zbl0683.34032MR1010418
- Benchohra, M., Henderson, J., Ntouyas, S., 10.1155/9789775945501, Contemporary Mathematics and Its Applications 2, Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133DOI10.1155/9789775945501
- Benchohra, M., Slimani, B. A., Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differ. Equ. (electronic only) 2009 (2009), Paper No. 10, 11 pages. (2009) Zbl1178.34004MR2471119
- Bonanno, G., Rodríguez-López, R., Tersian, S., 10.2478/s13540-014-0196-y, Fract. Calc. Appl. Anal. 17 (2014), 717-744. (2014) Zbl1308.34010MR3260304DOI10.2478/s13540-014-0196-y
- Bourdin, L., 10.1016/j.jmaa.2012.10.008, J. Math. Anal. Appl. 399 (2013), 239-251. (2013) Zbl06125381MR2993851DOI10.1016/j.jmaa.2012.10.008
- Bourdin, L., Idczak, D., A fractional fundamental lemma and a fractional integration by parts formula---Applications to critical points of Bolza functionals and to linear boundary value problems, Adv. Differ. Equ. 20 (2015), 213-232. (2015) Zbl1309.26007MR3311433
- Brezis, H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maî trise, Masson, Paris French (1983). (1983) Zbl0511.46001MR0697382
- Gayathri, B., Murugesu, R., Rajasingh, J., Existence of solutions of some impulsive fractional integrodifferential equations, Int. J. Math. Anal., Ruse 6 (2012), 825-836. (2012) Zbl1252.45004MR2905181
- Halanay, A., Wexler, D., Qualitative Theory of Impulse Systems, Russian Mir, Moskva (1971). (1971) Zbl0226.34001
- Haloi, R., Kumar, P., Pandey, D. N., Sufficient conditions for the existence and uniqueness of solutions to impulsive fractional integro-differential equations with deviating arguments, J. Fract. Calc. Appl. 5 (2014), 73-84. (2014) MR3234097
- Hildebrandt, T. H., 10.1215/ijm/1255455257, Ill. J. Math. 3 (1959), 352-373. (1959) Zbl0088.31101MR0105600DOI10.1215/ijm/1255455257
- Idczak, D., 10.1023/A:1022427914423, Czech. Math. J. 48 (1998), 145-171. (1998) Zbl0930.26006MR1614025DOI10.1023/A:1022427914423
- Idczak, D., Kamocki, R., 10.2478/s13540-011-0033-5, Fract. Calc. Appl. Anal. 14 (2011), 538-553. (2011) Zbl1273.34010MR2846375DOI10.2478/s13540-011-0033-5
- Idczak, D., Walczak, S., 10.1155/2013/128043, J. Funct. Spaces Appl. 2013 (2013), Article ID 128043, 15 pages. (2013) Zbl1298.46033MR3144452DOI10.1155/2013/128043
- Kurzweil, J., Generalized ordinary differential equations, Czech. Math. J. 8 (1958), 360-388. (1958) Zbl0094.05804MR0111878
- Kurzweil, J., 10.1016/0021-8928(58)90082-0, PMM, J. Appl. Math. Mech. 22 37-60 (1958), translation from Prikl. Mat. Mekh. 22 27-45 1958. (1958) Zbl0102.07003MR0111876DOI10.1016/0021-8928(58)90082-0
- Kurzweil, J., Linear differential equations with distributions as coefficients, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 7 (1959), 557-560. (1959) Zbl0117.34401MR0111887
- Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, Series in Modern Applied Mathematics 6, World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551DOI10.1142/0906
- ojasiewicz, S. Ł, An Introduction to the Theory of Real Functions, A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1988). (1988) Zbl0653.26001MR0952856
- Rodríguez-López, R., Tersian, S., 10.2478/s13540-014-0212-2, Fract. Calc. Appl. Anal. 17 (2014), 1016-1038. (2014) Zbl1312.34024MR3254678DOI10.2478/s13540-014-0212-2
- Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
- Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Series on Nonlinear Science, Series A. 14, World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787
- Schwartz, L., Méthodes mathématiques pour les sciences physiques, Enseignement des Sciences, Hermann, Paris French (1961). (1961) Zbl0101.41301MR0143360
- Stallard, F. W., 10.2307/2034939, Proc. Am. Math. Soc. 13 (1962), 366-373. (1962) Zbl0108.08203MR0138835DOI10.2307/2034939
- Wang, J., Zhou, Y., 10.4310/DPDE.2011.v8.n4.a3, Dyn. Partial Differ. Equ. 8 (2011), 345-361. (2011) Zbl1264.34014MR2901608DOI10.4310/DPDE.2011.v8.n4.a3
- Wyderka, Z., Linear differential equations with measures as coefficients and the control theory, Čas. PěstováníMat. 114 (1989), 13-27. (1989) Zbl0664.34013MR0990112
- Wyderka, Z., Linear Differential Equations with Measures as Coefficients and Control Theory, Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach 1413, Wydawnictwo Uniwersytetu Śla̧skiego, Katowice (1994). (1994) Zbl0813.34058MR1292252
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.