Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 1, page 171-195
  • ISSN: 0011-4642

Abstract

top
We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

How to cite

top

Idczak, Dariusz. "Functions of finite fractional variation and their applications to fractional impulsive equations." Czechoslovak Mathematical Journal 67.1 (2017): 171-195. <http://eudml.org/doc/287928>.

@article{Idczak2017,
abstract = {We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.},
author = {Idczak, Dariusz},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula; distributional derivatives; locally finite variation; impulsive hyperbolic equation},
language = {eng},
number = {1},
pages = {171-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Functions of finite fractional variation and their applications to fractional impulsive equations},
url = {http://eudml.org/doc/287928},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Idczak, Dariusz
TI - Functions of finite fractional variation and their applications to fractional impulsive equations
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 171
EP - 195
AB - We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak $\sigma $-additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a $\sigma $-additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.
LA - eng
KW - finite fractional variation; weak $\sigma $-additive fractional; derivative; fractional impulsive equation; Dirac measure; Cauchy formula; distributional derivatives; locally finite variation; impulsive hyperbolic equation
UR - http://eudml.org/doc/287928
ER -

References

top
  1. Abada, N., Agarwal, R. P., Benchohra, M., Hammouche, H., 10.1007/s10492-011-0004-5, Appl. Math., Praha 56 (2011), 227-250. (2011) Zbl1224.34207MR2810245DOI10.1007/s10492-011-0004-5
  2. Bainov, D. D., Simeonov, P. S., Systems with Impulse Effect. Stability, Theory and Applications, Ellis Horwood Series in Mathematics and Its Applications, Ellis Horwood Limited, Chichester; Halsted Press, New York (1989). (1989) Zbl0683.34032MR1010418
  3. Benchohra, M., Henderson, J., Ntouyas, S., 10.1155/9789775945501, Contemporary Mathematics and Its Applications 2, Hindawi Publishing Corporation, New York (2006). (2006) Zbl1130.34003MR2322133DOI10.1155/9789775945501
  4. Benchohra, M., Slimani, B. A., Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differ. Equ. (electronic only) 2009 (2009), Paper No. 10, 11 pages. (2009) Zbl1178.34004MR2471119
  5. Bonanno, G., Rodríguez-López, R., Tersian, S., 10.2478/s13540-014-0196-y, Fract. Calc. Appl. Anal. 17 (2014), 717-744. (2014) Zbl1308.34010MR3260304DOI10.2478/s13540-014-0196-y
  6. Bourdin, L., 10.1016/j.jmaa.2012.10.008, J. Math. Anal. Appl. 399 (2013), 239-251. (2013) Zbl06125381MR2993851DOI10.1016/j.jmaa.2012.10.008
  7. Bourdin, L., Idczak, D., A fractional fundamental lemma and a fractional integration by parts formula---Applications to critical points of Bolza functionals and to linear boundary value problems, Adv. Differ. Equ. 20 (2015), 213-232. (2015) Zbl1309.26007MR3311433
  8. Brezis, H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maî trise, Masson, Paris French (1983). (1983) Zbl0511.46001MR0697382
  9. Gayathri, B., Murugesu, R., Rajasingh, J., Existence of solutions of some impulsive fractional integrodifferential equations, Int. J. Math. Anal., Ruse 6 (2012), 825-836. (2012) Zbl1252.45004MR2905181
  10. Halanay, A., Wexler, D., Qualitative Theory of Impulse Systems, Russian Mir, Moskva (1971). (1971) Zbl0226.34001
  11. Haloi, R., Kumar, P., Pandey, D. N., Sufficient conditions for the existence and uniqueness of solutions to impulsive fractional integro-differential equations with deviating arguments, J. Fract. Calc. Appl. 5 (2014), 73-84. (2014) MR3234097
  12. Hildebrandt, T. H., On systems of linear differentio-Stieltjes-integral equations, Ill. J. Math. 3 (1959), 352-373. (1959) Zbl0088.31101MR0105600
  13. Idczak, D., 10.1023/A:1022427914423, Czech. Math. J. 48 (1998), 145-171. (1998) Zbl0930.26006MR1614025DOI10.1023/A:1022427914423
  14. Idczak, D., Kamocki, R., 10.2478/s13540-011-0033-5, Fract. Calc. Appl. Anal. 14 (2011), 538-553. (2011) Zbl1273.34010MR2846375DOI10.2478/s13540-011-0033-5
  15. Idczak, D., Walczak, S., 10.1155/2013/128043, J. Funct. Spaces Appl. 2013 (2013), Article ID 128043, 15 pages. (2013) Zbl1298.46033MR3144452DOI10.1155/2013/128043
  16. Kurzweil, J., Generalized ordinary differential equations, Czech. Math. J. 8 (1958), 360-388. (1958) Zbl0094.05804MR0111878
  17. Kurzweil, J., 10.1016/0021-8928(58)90082-0, PMM, J. Appl. Math. Mech. 22 37-60 (1958), translation from Prikl. Mat. Mekh. 22 27-45 1958. (1958) Zbl0102.07003MR0111876DOI10.1016/0021-8928(58)90082-0
  18. Kurzweil, J., Linear differential equations with distributions as coefficients, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 7 (1959), 557-560. (1959) Zbl0117.34401MR0111887
  19. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, Series in Modern Applied Mathematics 6, World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551DOI10.1142/0906
  20. ojasiewicz, S. Ł, An Introduction to the Theory of Real Functions, A Wiley-Interscience Publication, John Wiley & Sons, Chichester (1988). (1988) Zbl0653.26001MR0952856
  21. Rodríguez-López, R., Tersian, S., 10.2478/s13540-014-0212-2, Fract. Calc. Appl. Anal. 17 (2014), 1016-1038. (2014) Zbl1312.34024MR3254678DOI10.2478/s13540-014-0212-2
  22. Samko, S. G., Kilbas, A. A., Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York (1993). (1993) Zbl0818.26003MR1347689
  23. Samoilenko, A. M., Perestyuk, N. A., Impulsive Differential Equations, World Scientific Series on Nonlinear Science, Series A. 14, World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787
  24. Schwartz, L., Méthodes mathématiques pour les sciences physiques, Enseignement des Sciences, Hermann, Paris French (1961). (1961) Zbl0101.41301MR0143360
  25. Stallard, F. W., 10.2307/2034939, Proc. Am. Math. Soc. 13 (1962), 366-373. (1962) Zbl0108.08203MR0138835DOI10.2307/2034939
  26. Wang, J., Zhou, Y., 10.4310/DPDE.2011.v8.n4.a3, Dyn. Partial Differ. Equ. 8 (2011), 345-361. (2011) Zbl1264.34014MR2901608DOI10.4310/DPDE.2011.v8.n4.a3
  27. Wyderka, Z., Linear differential equations with measures as coefficients and the control theory, Čas. PěstováníMat. 114 (1989), 13-27. (1989) Zbl0664.34013MR0990112
  28. Wyderka, Z., Linear Differential Equations with Measures as Coefficients and Control Theory, Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach 1413, Wydawnictwo Uniwersytetu Śla̧skiego, Katowice (1994). (1994) Zbl0813.34058MR1292252

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.