The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds

David BorthwickColin Guillarmou — 2016

Journal of the European Mathematical Society

On geometrically finite hyperbolic manifolds Γ d , including those with non-maximal rank cusps, we give upper bounds on the number N ( R ) of resonances of the Laplacian in disks of size R as R . In particular, if the parabolic subgroups of Γ satisfy a certain Diophantine condition, the bound is N ( R ) = 𝒪 ( R d ( log R ) d + 1 ) .

Semiclassical spectral estimates for Toeplitz operators

David BorthwickThierry PaulAlejandro Uribe — 1998

Annales de l'institut Fourier

Let X be a compact Kähler manifold with integral Kähler class and L X a holomorphic Hermitian line bundle whose curvature is the symplectic form of X . Let H C ( X , ) be a Hamiltonian, and let T k be the Toeplitz operator with multiplier H acting on the space k = H 0 ( X , L k ) . We obtain estimates on the eigenvalues and eigensections of T k as k , in terms of the classical Hamilton flow of H . We study in some detail the case when X is an integral coadjoint orbit of a Lie group.

Page 1

Download Results (CSV)